
Issue 3

Enrica Prazzoli
Frank Mitchell
Yevhen Loza
Nathan Partlan
 Magy Seif El-Nasr
Samim
Issac Karth
Genetic Moo
Adam Riddle
Allison Perrone
Mark Rickerby
Antonios Liapis
Spencer Egart
Davide Ciacco

Contributors:

Editors: Jupiter Hadley - @Jupiter_Hadley
 Dann Sullivan - @FBFDann

Paul McCann
Seth Alter
Guillaume Pelletier-Auger
Pol Clarissou
Max Kreminski
Jasmine Otto
Damien Crawford
Guerric Haché
Scott Turner
Amin Babadi
Christiaan Moleman
Jo Mazeika
Terry Trowbridge
Joseph Alexander Brown
Denis Kozlov

Matt Schell
Keith Evans
Prophet Goddess
Sabine Wieluch
Juliette Foucaut
Doug Binks
Isaac Schankler
Elle Sullivan
Tilman Schmidt
Martin O’Leary
Johan Rende
Alexander Pech
Gorm Lai
Dan Cox

Organisers:
Joseph Brown, Mike Cook,
Jupiter Hadley, Rachel Hwang,
Azalea Raad, Dann Sullivan

Speakers: Berrak Nil Boya,
Bruno Dias, prophet goddess,
Jason Grinblat, Matthew
Plumer-Fernandez, Christoph
Salge, Janelle Shane, Anne
Sullivan

Thanks to: Freehold Games, Janelle Shane,
Matthew Plummer-Fernandez, James Ryan,
prophet goddess, Mark Johnson, Simon
Colton, Adam Smith

Cover Art by: Martin O'Leary

Some header/footer patterns from Martin
O'Leary’s daily drawings. You can find
and buy prints of them here:
https://twitter.com/mewo2sketches

https://twitter.com/mewo2sketches

To Our Kickstarter Backers

Abe Gellis
Adam Hoyle
Adam Norton
Adam Smith
Adam Wood
Adrian Gonzalez
Adrien Brizard
Alex
Alex Clay
Alex Cook
Alisblack
Andrea Castegnaro
Andrew Armstrong
Andrew Fray
Andrew Hollenbach
Andrew Kalek
Andrew Lim
Andrew Wang
Andy Robert
Anne Sullivan
Ashley Elsdon
Ben Howarth
Ben Lambell
Ben McGraw (Grue)
Bill Nega
Björn Prömpeler
BrettW
Brian Sowers
bunnyhero
Caden Potter

Caleb Jones
Carey
Carolyn Goodell
Case Portman
Charles Tangora
CheshireSwift
Chip
Chris
Chris Allen
Chris Janes
Ciro Durán
Clayton Cooper
Colin Mitchell
craigp
Cyrill Etter
Cyrille Morin
D.Rail
Dan Tasse
Dana Chayes
Daniel Gonçalves
Daniel Nye Griffiths
Daniel Tintle
Daniel Walker
Delibean
Derek Stobbe
Didier Despois
Doctor Popular
Dylan McDiarmid
Dylan Sinnott
Eclogiter

Ed
Ed Powley
Edward Laverick
Emily Short
Emma
Emma Lord
enrica p
Eoin Carroll
Eric Schmidt
Eric Schwarzkopf
Erik 256
Evan Cobb
Fed Kasatkin
Feufochmar
Forrest Oliphant
Frank Lyder Bredland
gabb
GapGen
Garrow
Gary Steinke
Gavin Inglis
Genetic Moo
George Rowe
Gorm Lai
Guerric Haché
Guilherme Tœws
Guillaume
Gunnar Hemmann
harryhatman
Heather Corcoran

Without the following people who supported our Kickstarter, we would not have been able to
fund the amount of assets, tutorials, talks, and other aspects of the ProcJam. Thank you ever
so much from the bottom of our hearts.

Henry Peteet
Henry Smith
Hilary Mason
Hodge
Hugh Berglind
Hyacinth Nil
Ian Badcoe
Isaac Fulkerson
Isaac Karth
István Kőhalmi
Jacob Garbe
James Bell
James Dreiss
James Ramirez
James Webber
Jamie Woodcock
Janelle Shane
Jason Grinblat
Jason Peacock
Jasper Stocker
Jimmy Schubert
Jo
Joerg Reisig
John Hergenroeder
Johnathan Pagnutti
Johnicholas Hines
João M. Cunha
JReynolds
Julien Delezenne
Julio Terra
Jupiter Hadley
Jurie Horneman
Justin Loudermilk
Kate Compton
Kayn

Kemp
Kennet Hernandez
Kevin Jacobson
Kitfox Games
Krystal Śmierć
Le
Lee Tusman
Lemming
Leo Browning
Liza Daly
Llaura
Lorenzo Grompone
Luke
Luke Dicken
Luke Weber
Lynn Cherny
maetl
Mardoch
margaretmoser
Mark Clerkin
Mark Ffrench
Mark Gritter
Mark Renner
Mark Wunsch
Martin Kugler
Matt Craven
Matthew
Matthew Deline
Max Silbiger
megallo
Michael Gradin
Michael Langford
Michael Springer
Michael Twomey
Michelle

Michelle Yeargin
Miguel Sicart
Mike Judge
Mike Powers
Min Zhao
Nathan Fritz
Nathaniel Mitchell
netsabes
NICOLAS Jean
Nikki
Noah Emmet
Oddvar Lovaas
Oleg Dolya
Pachyderm
Pat Ashe
Paul Hart
Phoenix Perry
Quinn Monk
r618
Rainer Volz
Random Commoner
Richie Camara
Rick
Rob Haines
Rob Saunders
Robert Masella
Robert Wells
Robin Baumgarten
Roc
Roman Panasko
Romeo Barnett
Rory
ruby
Russell Fincher
Ryan Orlando
=

Thank you to everyone who shared our Kickstarter and who brought light to it! For
ProcJam 2019, we will also have a Kickstarter, so keep an eye out if you want to support
us!

Sam Humleker
samtb
santi.ontanon
Scott Anderson
Scott Grant
Scott Lininger
SeaWyrm
Several
Shaddock Heath
Shane Celis

Shawn Taylor
Stephane
Steve Mumford
Steve Washington
Sven Nilsson
T. A.
Tam Toucan
Terry Smith
Thomas Smith
Thomas Winters

Tieg Zaharia
Tim Plummer
Tom
Tommy Thompson
Travis Faas
Troy Visineau
Tyler Coleman
Will Stavely
Wolf Owczarek
ZAE

The ProcJam is a unique, relaxed game jam that aims to make
procedural generation accessible and to show off projects that are
pushing the boundaries of generative software. As a whole, this jam is
laidback, easy to enter, and fun to be apart of. We are working to
build a community of friends and peers across disciplines all
interested in procedural generation.

The ProcJam takes place across nine days, including two weekends.
You can enter anything you’d like - art, video games, board games,
tools, anything you’d like to create as long as it has something to do
with procedural generation/random generation/generative software
etc. You could even take an existing project and add some generative
magic to it for the jam! If you start before the start of the jam or enter
your project after the end of the jam, that's fine as well.

ProcJam is also more than a game jam - with the help of our
Kickstarter Backers, we are able to fund art packs, tutorials, and talks
all on generation. These resources are put out publically as ways to
grow the community and help get people into generation.

This is truly a community effort, even down to this zine which was
made from submissions from the ProcJam community.

We hope you enjoy it!

Make Something That Makes Something

1

Yet Another Contemporary Jewellery Exhibition……………….……....……...3
Writing Interesting AI……………………………………………....………...….….6
What’s Your NAME? …………………………………………………………….……9
Towards Generating AI for Generative Worlds:
Evolving Behavior Trees in Unreal Engine 4…………………………...………12
Thoughts on the Generative, Creative Economy…………………………..…..16
The Locus of a Generator…………………………………………………….…….19
Robots on Typerwriters………………………………………………...…………..22
Deciphering Generated Symbols as a
Game Mechanic: The Design of "Alien Transmission"..................................25
Bugs & Bettles…………………………………………………………….…………..29
On the Responsibility of Makers……………………………………………….….32
A Web-based Node Image Editor…………………………………………….……34
Read-world Data as a Seed…………………………………………………….……35
Representing Writing………………………………………………………………..41
Making a Fantasy Newsroom Bot…………………………………...…………….45
Procedural Generation in Twine………………………………………….……….47
A Year of Daily Generative Sketches…………………………………………..….49
Procedurally Generated Spellbook Sprites……………………………..……….52
Procedural Generation, Variety and Reproducibility……………….......…….53
Letting Go of Realism…………………………………………………………....…..55
Mountscapes…………………………………………………………………….…….58
Mere Juxtaposition - On Generative Fiction………………………………..……61
Intelligent Middle-Level Game Control……………………………………….….69
Superorganism Art…………………………………………...………………….…..70

2

Not_constantinople………………………………………………...………………..74
Nos Falaises…………………………………………………………………..……….75
Minus World: Generative Game
Reviews from a Parallel Universe……………………………………….………..77
Oddifier: RPG Character Sheets…………………………………………...………80
All Dinosaurs are Great and Small………………………………………..………82
Story Generation by Algorithms: A
First Attempt at a Digital Storyteller……………………………………………..86
Islands Are Just Mountains Up To
Their Necks in Ocean: Part 1…………………………………………………...….90
Guppy - Procgen as Antidote to Development Boredom…………..………….96
Game Randomizers: Procedural Variations on Your Nostalgia….…………..99
Designing Strata: A 2D Level Generator for Non-Programmers…….….….101
Experiments in Generative Geometry:
Building Meshes in Unity, Vertex by Vertex…………………………………...105
From Hacker Poets to Cybernetic Poets…………………………………..……108
Boxes in Space…………………………………………………………...………….110
Carving the Infinite Plane into Discrete Regions……………………………..117
Islands Are Just Mountains Up To Their Necks in Ocean: Part 2…….…….121
Apop: Seeing Patterns Everywhere…………………………………………...…131
Alien Growth - A 2D Plant Generator…………………………………….……..133
But What Do you *Do*: Mechanical Ideas for
Turning a Cool Generator Into a Compelling
Game………………………………………………………………………….……….135
High End Procedural Systems (Procedural Trip Report).............................138

By Enrica Prazzoli

www.enricaprazzoli.com | @enricapr

My name is Enrica, and I am a contemporary jewellery artist.

Today you are going to visit a contemporary jewellery exhibition.

“Contemporary” as in contemporary art; “jewellery” in the widest
and wildest sense, as in “things that go on the body” and/or are body
related. You might have never heard of it before, and that's fine: it’s
a pretty specific field.

You enter the place where the exhibition is hosted, and find yourself in
a <<trace "place">>; you look around, and you see <<trace "visitor">>.

You might wonder, how I got from making things that go on the
body, to making generative text?

“Stop thinking about art works as objects, and start thinking
about them as triggers for experiences.” Roy Ascott

Sometimes the starting point of a project is the kind of experience I
want to create; sometimes it is something else, but thinking about the
experience is something that always happens during the process.

You get close to the jewellery display and <<trace "adv">> <<trace
"verb">> a piece that is <<trace "size">>. You get closer, to a have a

look at this <<trace "Jewel">>.

In this case, I wanted to create an experience that was playful,
familiar to the people who have an interest in the field, is always
different, but also feels like it’s always the same. By using text only,
in a boring format (Verdana, black text on a white background, on a
laptop, not a custom-made installation) I leave space for the reader
to project their own personal version of whatever random
combination was generated especially for them.

“Sometimes

the starting

point of a

project is the

kind of

experience I

want to create;

sometimes it is

something

else…”

3

http://www.enricaprazzoli.com

You move on to the next piece; this one is <<trace "size">>. You <<trace
"adv">> <<trace "verb">> <<trace "Jewel.a">>.

I’ve seen it happens in different fields, and I’ve experienced it myself
several times : you discover something that’s new to you, get
interested in it, you look out for more, marvelling at the existing
variety of methods, techniques, outputs, things that can be done
within that field. You keep looking for more, keeping up with what’s
happening, looking back at the history of that subject. And after a
while (maybe months, maybe years, maybe decades) you start
feeling that, yes, endless variations exist, but it mostly feels like more
of the same old thing and it’s really rare that you are truly surprised.

The next one is <<trace "size">>. You <<trace "adv">> <<trace "verb">>
it: it appears to be <<trace "Jewel.a">>.

“Yet another contemporary jewellery exhibition” is a text-based
interactive installation that takes the form of a
procedurally-generated text on a webpage, describing a visit to a
hypothetical exhibition. The only interaction possible for the visitor is
to refresh the page, creating a new version and forever erasing the
previous one.

You move forward to look at one more piece, <<trace "size.a">> <<trace
"Jewel">>.

Narrated from a second-person point of view, it briefly describes the
experience of a visitor entering the gallery space, looking at the
exhibited jewellery pieces and, finally, briefly examining the feelings
towards contemporary jewellery elicited by this visit.

You reach the last piece of this small exhibition: you <<trace "adv">>
<<trace "verb">> <<trace "size.a">> <<trace "Jewel">>.

4

5

I have used Twine 1.4.2 because I like Jonah as a format, and at first I
thought that showing one paragraph at a time would create an
experience closer to the one of being in a gallery and looking at one
artwork after the other. However “Yet another contemporary
jewellery exhibition” was going to be actually shown in a gallery, and
the gallerist agreed with me that, in this case, that was redundant. So
you get all the text at once. I used Twinecery for the generative part,
and I found it way more forgiving than straight up Tracery.

You exit the place and stop briefly to consider what you have just seen.

It is a way to playfully explore my sometimes conflicting feelings
towards this field: the enthusiasm and the energy and the ingenuity
that often permeate self-organized shows; the feeling of information
overload after visiting several exhibitions in a row during jewellery
weeks; the excitement of working on a new project; the feeling of
dread that everything has already been done, better than I will ever
be able to.

After this visit, you feel that you <<trace "lovehate">> contemporary
jewellery.

6

By Frank Mitchell

https://www.frankmitchell.org | @onefrankguy

For a long time, the only kind of game AI I knew how to write
was a mean one. You know, the kind that picks the best
possible move every time. The kind no one wants to play
against.

It wasn't until I found Dan Cook's work on game atoms, and
player skill progression in games, that I started thinking there
might be a way to write less mean AI [1]. Maybe computers
could learn to play games more like people, and I could write
AI that were interesting game players.

Any rule book for a game has two things at its core:
1. The mechanics of how to play
2. The win and loss conditions

There is almost never anything about skill, or strategy, or
tactics, or getting better. We learn these things as we play the
game. So how do you build an AI that can learn those things
too?

You start at the same place you do when teaching a person.
These are the things you can do on your turn. This is how you
know when the game is over. Code the game state as raw
data. Code each "thing you can do on your turn" as a function
that takes an existing game state and transforms it into a new
game state. Code "how you know when the game is over" as a
function that takes a game state and returns yes or no. Now
you have enough for an AI.

In the beginning, your AI will play randomly. It will pick a
thing to do on its turn and it will do that thing. Then it will

https://www.frankmitchell.org

 check to see if the game is over. Think about a first time
checkers player. They push pieces around the board. They
follow the rules. Take a jump if you can. If there are no jumps
to take, move diagonally to an empty space. This is what your
AI does too. It is a beginner with no memory. It doesn't see
forks or double jumps or king making moves. How do you
teach it those things?

With just a rule book, the most basic assessment of a game
you can make is, does this move cause me to win? So have
your AI do that. Get a list of all the possible moves. If any of
them are winning moves, pick a winning move to play. If
none of them are winning moves, pick a random move to
play.

If you can see moves that cause you to win, you can also see
moves that cause your opponent to win. Have your AI do that
too. Find all the winning moves that the opponent could make
if it was their turn. Find all the moves the AI can make that
will block the opponent from winning. Have your AI choose a
random blocking move and play it.

Now you have an interesting AI. If it has a winning move, it
plays one. If it has no winning moves, it plays a blocking
move. If it has no blocking moves, it plays a random move.
But it's not perfect. A good player can still beat it. When you
set up a fork, where you have two winning moves, the AI can
only block one of them.

Each of these decisions for move types (winning, blocking,
random) is a function. Think of more functions to make your
AI more interesting. How about a function to pick moves that
result in double jumps? Or a function to pick moves that

“If it has a

winning move,

it plays one. If

it has no

winning moves,

it plays a

blocking

move.”

7

aren't back row pieces. Or a function to pick moves that make
kings. Now your AI can do lots of things, and the order it
chooses to do them in becomes its style of play.

Your AI might be flashy, choosing double jump moves and
king making moves. Or it might be defensive, choosing
blocking moves and moves that keep back row pieces
immobile. Or it might be chaotic, trying every move function
randomly until it finds something playable.

In the end, your AI might ignore winning moves entirely. So
when it wins, it will be by accident, almost as if it didn't see
the winning move. Almost as if it made a mistake. Almost as if
it was human.

P.S. If you're looking for code examples, I made an interesting
AI for Nine Holes, one of the oldest games in the world [2].

[1]
http://www.lostgarden.com/2007/07/chemistry-of-game-design.html
[2] https://onefrankguy.github.io/nine-holes/

8

http://www.lostgarden.com/2007/07/chemistry-of-game-design.html
https://onefrankguy.github.io/nine-holes/

By Yevhen Loza (EugeneLoza)

In roguelike or sandbox games procedural generation is used not
only to create world areas and fill them with items and enemies.
Friendly NPCs also want to be a part of the game and to do so, they
need a worthy name. In this article I'd like to share a simple names
and nouns generation algorithm I've made this summer.

A name is not a random set of letters. It's a word. Maybe, it had lost
its meaning long ago, maybe it came from a long forgotten folk. But
most often it follows the normal word building rules in native
language. Therefore it looks like a good idea to build names from a
usual dictionary.

Word Structure

First of all, let's make an important simplification, so that we won't
be forced to analyze each syllable in a grammatically correct way.
We may imagine each word structure as "(C)VC+VC+VC(V)", i.e. each
"syllable" being a vowel+consonant block (VC). The "first syllable"
may also heave "leading consonant block", and therefore should be
stored and used separately. Let's also demand, that there should be
no syllables with zero consonants to avoid generating names like
"Miisaaaal".

Then we split each words into "syllables" and store them in an array
or a list. However, some syllables are used frequently, and others are
rare. Therefore the algorithm should also store the number of "hits"
per syllable, so that generated words would follow the same pattern.

Namespace

You know, I have a very common name for a place I live in. And it
took me quite some time to stop reacting to random people around

“A name is not

a random set

of letters. It's a

word.

9

calling my name :) So, we should avoid that problem by creating a
"namespace" we're all used to in programming - no two variables
may have equal names. So, while generating the name we just check
it against the names that have already been generated.

Moreover, we've just used almost a million words to build our set of
syllables and it's quite possible that the generated word will be... yes,
exactly one of the words that was used to generate it. So, right after
we've created the list of words, we just add them to namespace to
avoid NPCs called "Rhinoceros", "Skyscraper" and "Watermelon".

Ban list

I know a Chinese scientist whose name sounds like [CENSORED] in
Ukrainian language. Such things happen in real life and often result
in stupid jokes and puns.

We should try to avoid such inconveniences by creating a "ban list".
It works similar to namespace, but while the namespace checks the
whole word, the ban list scans all the substrings. We don't want a
character named "Mol[CENSORED]as" in our game, don't we? The
probability is not as low as one might think and concerns about 2%
of all possible names.

But of course, only human ear can tell what sounds nice or ugly. So,
we may also create a manual ban list of letter combinations like
"rdsp" or "thyth" which are hard to pronounce, but may by chance
appear in generated names.

We should also control consonant-to-vowels ratio in words, so that
there would be not too many complex consonant blocks. Average 2-4
letters per vowel in a word produces quiet nice results.

10

“It works similar

to namespace,

but while the

namespace

checks the whole

word, the ban

list scans all the

substrings.”

The end?

The last thing remaining is to add the word ending. With "VC"
syllables structure we guarantee that the word always ends with a
consonant. Such generated name suits a male character and adding a
letter "a" in the end makes a female name. We may also use a simple
trick to make short names (nicknames) for our characters by just
using their first syllable and adding "i" letter in the end (e.g. "Lepuha
aka Lepi").

Result

In an example below 4 Public Domain licensed English word lists
were used with total of 900660 words, also ban lists were created.
Processing them with the algorithms described above produces
11760 first syllables and 1802 normal syllables. On average desktop
PC each name takes about 16-18 ms to generate.

With up to 4 syllables per word that provides for over a trillion of
unique names. And of course, this algorithm may be used not only
for names in English, but for most other languages too. And let's
welcome our new NPCs named Inscrana, Bernof, Phimowax, Baltela,
Sniggit, Kagudum and Degluca!

You may find the corresponding FreePascal code and word lists here:
https://gitlab.com/EugeneLoza/DecoNouns

“With up to 4

syllables per

word that

provides for

over a trillion

of unique

names.”

11

https://gitlab.com/EugeneLoza/DecoNouns

12

By Nathan Partlan and Magy Seif El-Nasr

npc.codes | @NPCDev

Many games procedurally generate significant portions of their
environments, gameplay, and even narrative. Generated game
environments are not new; roguelikes and other games using
procedural content generation (PCG) have existed since almost the
inception of the medium. Recently, however, high-profile titles such
as No Man’s Sky, Fortnite, and Shadow of War have relied heavily on
PCG.

With this focus on generativity, there is a need for improvement and
research in designing and building compelling, capable AI agents to
populate their complex, generated worlds. We are experimenting
with one approach to help designers build more comprehensive and
robust AI that may be more capable of tackling decision-making in
generated environments.

The AI for Fortnite was one of the subjects of a GDC talk (Isla and
Abercrombie 2016) about the challenges and possible approaches for
AI in a generated environment, focusing on movement and
pathfinding. These are important problems, and tractable ones for

https://npc.codes/

which the Fortnite team found solid solutions. However, the agents
in question were limited to movement and combat behaviors. For
generative games to become more inclusive and expand into new
genres, we need to develop affordances beyond those, building more
compelling narratives and enabling creative gameplay and
problem-solving for players.

To begin to approach these problems, we are building on research on
evolving behavior trees (Perez et. al. 2011). Our approach applies
genetic programming to modify hand-designed behavior trees, a
commonly used architecture for controlling game AI agents. By
starting from designer-specified behavior trees, and then generating
evolutionarily advantageous improvements to them for unforeseen
situations, we hope to retain designers’ goals for their agents while
building more robust behavior for generated environments.

Genetic programming is a technique for evolving trees, usually
applied to “parse trees” for computer programs (Poli et. al. 2008). It
naturally maps to behavior trees, which operate much like simple
programs. Therefore, we built a genetic programming system for
Unreal Engine 4’s behavior trees. The details are outside the scope of
this article. However, the process involves mapping the behavior

“...we built a

genetic

programming

system for

Unreal Engine

4’s behavior

trees.”

13

trees into a “library” of possible node types, simple crossover and
mutation operators, which swap nodes between trees and randomly
replace nodes with other known node types, and a fitness function to
evaluate the resulting trees. We use a sped-up version of real
gameplay for evaluation.

To test this system, we generated behavior for “zombie” AI agents in
the open-source “Epic Survival Game” by Tom Looman. We removed
functionality for chasing and attacking from the zombies’ behavior
trees, but provided a library of useful nodes to our evolutionary
algorithm. We found that, within a few generations, zombies would
learn to chase the player and patrol the area. At first, some zombies
would attack the player briefly, then turn and run away. By adding
the size of the tree as a fitness penalty, we found that the efficiency
and simplicity of the trees would improve over time, until most
zombies exhibited consistent chasing behavior. Although this was a
very simple test environment, we believe that future iteration will
allow us to generate behavior for more varied and complex agents.
Our next step will be to separate our system into a generic library for
behavior tree evolution in Unreal Engine 4 so that it can be tested
with more games.

14

In the future, we will need to perform further research to make our
system easier to use for designers. We will need to provide
visualizations and user-friendly tools for designers to understand,
select between, and debug the resulting behavior trees. If designers
feel that their control is infringed too heavily by generative tools,
they are unlikely to trust and use them. Moreover, defining effective
fitness functions for complex agent behavior is a difficult and
under-studied area of game AI research. We will need to develop
new methods for defining and tweaking fitness functions and
controls for gameplay evaluation in order to make this tool
accessible. Finally, we need to be able to test generated agents in
realistic gameplay environments, which means developing models of
player behavior with which to train the agents. Only by combining
effective player models, generative worlds, and designer-friendly
tools can we enable responsive AI that works with humans to create
a more inclusive, expansive future for games.

Acknowledgements
Thanks to Isha Srivastava and Alex Grundwerg, who contributed
code and ideas to this project.

References
Isla, Damian, and John Abercrombie. 2016. “AI For Generated
Worlds.” presented at the Game Developers Conference.
https://gdcvault.com/play/1023418/AI-For-Generated.

Perez, Diego, Miguel Nicolau, Michael O’Neill, and Anthony
Brabazon. 2011. “Evolving Behaviour Trees for the Mario AI
Competition Using Grammatical Evolution.” In Applications of
Evolutionary Computation. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-20525-5_13.

Poli, Riccardo, William B. Langdon, and Nicholas Freitag McPhee.
2008. A Field Guide to Genetic Programming. Lulu Enterprises, UK
Ltd.

“We will need

to provide

visualizations

and

user-friendly

tools for

designers to

understand...”

15

https://gdcvault.com/play/1023418/AI-For-Generated
https://doi.org/10.1007/978-3-642-20525-5_13

16

By Samim

@samim

I find it comedic how professional digital creative tools (video, music,
design, etc.) in 2018 are still being mainly promoted as "tools for
hand-crafted, artisanal creation" - while we are living in an age
where bot-nets are producing and recommending artefacts by the
trillions.

While the quality of creative artefacts generated with machine
assistance is debatable — it is quickly getting "good enough" across
many fields. Combined with other unique benefits of the generative
model, traditional digital creative tools are becoming obsolete fast.

The outlines of the new creative economy are clear: 90% of all
content will be machine generated (with little to no human
intervention) and extremely cheap to buy. The remaining 10% will
be artisanally made by humans, which focus mainly on branding
and storytelling. Technologically, you don't need "AI" or very
sophisticated machine learning for most of this to happen — good
old creative computation (at massive scale) does the trick.

Finally, a note to the people saying "No worries, AI + creativity is all
about empowering and augmenting human creators, there won't be
blood." I've worked in this industry for years & find such talk
intellectually lazy and at times even deceptive. There will be blood.

I am not questioning that AI can and is empowering some creators
and enabling wonderful new forms of creation — it will. But, to see
what happens with such tech when at industrial scale, one can look
at fake-news and spam generation bots. That's a more realistic view
of what’s coming to all creative industries, operating under our
current global economic paradigm.

The generative creative economy won't be a utopia by any stretch,
but is likely a messy hell-hole for many creatives — not unlike the

 situation right now. We have to actively shape this future by
fighting vested interests in the system. Yes, human jobs destroyed
through growing automation capabilities can be replaced with
entirely new jobs. But it won't happen magically — it’s a major
generational effort which requires deep investment in education and
culture. Human creators need to be recognised, not hidden, by AI.
Under the current klepto-capitalist global system, that seems highly
unlikely.

If we want more positive outcomes, the "why" needs to be addressed
properly, beyond our current semi-pornographic obsession with the
"how".

Beyond doom and gloom, there is hope: The vision/opportunity I
sense is phenomenal: Creative AI tools could help raise the global
level of literacy, creativity and empathy, by dramatically shortening
the time of thought to highly communicative (possibly multimodal)
artefacts.

Many moons ago I wrote this extensive piece on the sector, from a
more hopeful, slightly utopian perspective:
https://medium.com/@creativeai/creativeai-9d4b2346faf3

Yet the reality of creative industries today looks very different:
Advertising runs the show (see Google etc) — which is really just a
synonym for either "spam" or "social engineering": Both horrible for

17

https://medium.com/@creativeai/creativeai-9d4b2346faf3

societies in times of climate change — and not conducive as objective
functions for more creativity or education. In the sense of raw reach
& economic impact, the advertising industry is arguably the most
powerful "art form" of the 21st century. And so when you ask for
"concrete example" of dystopian generative systems, we must look at
developments in this area.

One of the most influential developer of creative tools — Adobe —
has recently doubled down on the intersection of """AI""" and
"""Creativity""", with their "Sensei" Initiative. Guess who they are
targeting with their tools? Yes, Advertisers. In the sector of
advertising, the quality VS quantity debate is very different: it is NOT
about the values of art in the classical sense, or about storytelling or
other humane things — it is about naked money. This is a clearly
parameterized signal to feed to machines as loss/reward-function,
and due to this fake clarity, such systems can grow like cancer.

Such economic success is precisely what drives humans to extend
generative advertising logic to other creative fields. Repetitive
generative muzak in the charts and endlessly boring superhero
movie rehashes on the screen are a reality already today, and all
using some form of "optimisation" algorithms. And so we see the rise
of "creative" botnets - the rise of fake news and ever more fractaline
simulacra's (see this post:
https://samim.io/p/2018-04-23-the-solution-to-exploding-fake-news-an
d-spam-botnets-ca/)

I personally do not agree with the politics and dynamics of the
visions outlined here. My writing is meant as a warning pointer
within search space. We must strive towards more appealing
outcomes, for humanity’s sanity, and well-being, in times of climate
change might very well depend on it.

18

“Such

economic

success is

precisely what

drives humans

to extend

generative

advertising

logic to other

creative

fields.”

https://samim.io/p/2018-04-23-the-solution-to-exploding-fake-news-and-spam-botnets-ca/
https://samim.io/p/2018-04-23-the-solution-to-exploding-fake-news-and-spam-botnets-ca/

By Issac Karth

https://procedural-generation.isaackarth.com

There’s no generator that is the best for every circumstance. Indeed,
you often want to tailor the generator to fit your individual goals.
One lens that we can use to analyze how generators can differ is
what I’ve taken to calling the generator’s Locus. The name is based
on the idea of the center of attention or the center of gravity: where
is the locus of control for this generator? Where are we focusing our
analysis?

For example, in Minecraft the generator places diamonds deep in the
earth, following a specific set of rules: they have to be deep but not
too deep, they are placed in clusters, each cluster is generated at a
distance from other clusters, and so on. Once they’re mined, the
diamonds are basically all the same. Their difference comes from the
structure of the way they are generated. We can call a generator that
speaks to the player through the structure of generated things one
with a locus centered on structure.

Structure-locus generators tend to be experienced indirectly. The
pattern of diamond placement in Minecraft isn’t something the
player can directly interact with: the player can only directly
interface with the individual voxels, not the intangible generator
that placed them. Another example is the history generation in
games like Dwarf Fortress and Caves of Qud. The player sees the
results of the generation, but can’t directly view the process that
created it. Instead, they infer the relationships that the structure
exposes.

This can manifest in many interesting ways: because diamonds in
Minecraft have the constraint that they are only found deep
underground, the player will encounter them late in the progression.
Spelunky always puts the exit lower than the entrance. And players
can learn more complex associations: the weapon spawning rules in

“Their

difference

comes from

the structure

of the way they

are generated.”

19

https://procedural-generation.isaackarth.com

PUBG and DayZ give players a way to anticipate where to look while
still not guaranteeing any particular outcome. (The military weapons
tend to spawn in the army base, the shotgun in hunting lodges…) By
using different distributions of probabilities, including some
predictable elements, and having constraints that let the player
anticipate correlations, the generator becomes a richer experience.

But, other generators don’t foreground the creation process. Instead,
they concentrate on making the most expressive generated artifact.
My favorite example for this is the jetpack platformer Exile,
originally on the BBC Micro in 1988. To fit a big map on the small
disk, they built a generator for it. Many games of the era did similar
things, including everyone’s famous touchstone, Elite. What was
significant about Exile is that it generates exactly one map. There’s
no variation and therefore no way for the player to figure out what
the generator is capable of creating outside of that single map.

While Exile is an extreme example of a one-off generator, there are
many other generators that primarily focus on the surface of the
generated things. In these cases, the generated thing is more
important than the system that generates it. This is a relatively
popular way to approach designing a generator, where you want
your generator to create interestingly unique and complex things.
Some games that use it effectively are the way that Desert Golf has
one fixed sequence of levels that is the same for all players, the the
way that Animal Crossing towns are generated at the start of the
game so they’re unique to each player, and any generator that
creates a handful of highly-detailed artifacts.

This is complicated by the way that generators can be layered. For
example, in Dwarf Fortress the dwarves can engrave the stone walls
and floors with images, which have procedurally-generated
descriptions. An elaborate engraving has a very surface-locus
description, with details about what the picture shows. But the
pictures are often depictions of historical events from the generated

20

21

history, tying them into the structure-locus. The same generated
artifact can be viewed from two different perspectives.

Tying the different generators together like this lets us build nested
layers of generators that are more meaningful than any single
generator would be on its own. As with the engravings from Dwarf
Fortress, the histories of the sultans in Caves of Qud are used with
nested generators. They are tied into the backstory lore and to places
and items that the generator adds to the world. Spore is built around
this idea: anything you encounter in the world was made with one of
the other generators, often as designed by another player. The
individual from the creature creator becomes the template for an
entire species.

Hopefully, thinking about the locus of a generator like this can help
us design better generators, find new ways to plug different
generators into each other, and gives us new vocabulary to use when
we’re performing criticism.

“The individual

from the

creature

creator

becomes the

template for an

entire species.”

22

By Justin Edwards and Allison Perrone

@RobotTypewriter | batcamp.org

Hello, we’re Justin and Allison.

We’re the hosts of Robots on Typewriters, a new podcast all about
computer-generated and computer-assisted comedy. On Robots on
Typewriters, we love to laugh about the wild, weird, and sometimes
all too human things that come out of random generation, artificial
intelligence, and automation. And because the world needs more of
that stuff, we always try to make some of our own artificial humor as
well.

Who would make such a podcast? Let us introduce ourselves.

Justin is a graduate student at University College Dublin where he’s
researching conversation agent interactions (talking to Alexa and
Siri) and interruptions in those interactions. Justin has been laughing
at computers for most of his life, starting by delighting in the
procedurally generated names of rookies in sports video games
throughout his childhood. He started laughing at computers in a
more professional setting during his junior year of college when he
took his first human-computer interaction class and started
researching multitasking behaviors during computer use.
Professionally, he hopes to be an industry researcher that laughs at
conversation agents for the foreseeable future. His favorite part
about making Robots on Typewriters is, inexplicably, formatting
datasets and feeding them to neural networks. What a nerd.

Allison is a writer and otherwise general media creator who works
at home full-time and therefore craves the company of computers
and the internet to stay sane. Though she’s a little less academically
qualified than Justin when it comes to laughing at computers and
maybe doesn’t quite get how it all works, she sure gets why it’s so
funny. As a child who skirted the edges of mid-2000s internet
culture, she’s come a long way from thinking how hilarious it is to be

“...a new podcast

all about

computer-gener

ated and

computer-assiste

d comedy.”

http://batcamp.org/

 “so random” and yell “Waffles!” in a room of friends. Now that she
understands real comedy, she knows it’s much funnier to click
through a Random Food Generator on RandomLists.com and
contemplate the absurdity of a meal consisting of only parsley and
condensed milk.

The idea for this podcast goes back several years to a night when we
found ourselves weeping with laughter, having hijacked Justin’s
sister’s phone to text her unwitting friends nonsense messages using
her predictive text. Ever since, our interest in comedy and art that
utilizes things like procedural generation and other bits of AI has
grown exponentially. There is something so endearing about a
neural network doing its best to produce a list of plausible band
names but turning out results that include “Stritty Landy Halking
Mobil Radpian” and “Tamont Clirf.” It’s doing its best.

Randomization perpetrated by a computer adds an element of
absurdism to comedy that we can’t trust our own overthinking
human brains with. The results of a simple random generator are so
pure and thoughtless. We think of those generators, those neural
nets, those algorithms as our unseen collaborators who are truly the
heart of our podcast. Neither of us are trained comedians and we’re
not the most gifted improvisers. Why wouldn’t we hand that hard
work off to computers like the millenials we are?

Our show consists of two segments (both named using random word
generators): the Zesty Hat and the Trashy Toy.

In our Zesty Hat, one of us presents something interesting or
hilarious that we recently found around the net, including things like
Twitter bots, blog posts about neural networks, and we even did a
mini-feature on ProcJam 2018, showcasing some of our favorite
submissions! Inevitably, we end up following more robots than
people on social media and exposing each other to our new favorite
synthetic personalities on the internet.

23

For the Trashy Toy, one of us devises a game for the other involving
all sorts of computer generated content. Our Trashiest of Toys have
seen us attempt the following:

Telling the difference between real college mascots and a neural
network’s new proposals
Beating IBM’s Watson in a high-octane cooking challenge
Sorting real Lil Pump lyrics from a predictive keyboard’s version

And if you listen to the very end each week, you’ll often hear
something a little extra we like to call the Least Significant Bit.

Robots on Typewriters is available on Apple Podcasts, Stitcher, and at
batcamp.org. If it piques your interest, please listen, subscribe, and
connect with us on social media!

24

By Antonios Liapis

http://antoniosliapis.com | @SentientDesigns

Board game play is enhanced through technology for the purposes of
time-keeping in games such as One-Night Werewolf, logistics for e.g.
hit point tracking in Hero Realms or revealing hidden information in
Alchemists, new mini-games such as the digital puzzles in Mansions
of Madness, and randomization.

Randomization could be considered a form of procedural content
generation, although it often follows a simple digital variant of
shuffling a deck or looking up values in a table. While randomization
speeds up preparation in long games such as Mansions of Madness
and ensures information stays hidden in Alchemists, it does not
particularly contribute to novel gameplay. The generated content
(i.e. the event sequence or board) forms a backdrop for traditional
game mechanics (dice-rolling, token placement, etc.) and only
indirectly affects the player experience.

“While

randomization

speeds up

preparation in

long games

such as

Mansions of

Madness and

ensures

information

stays hidden in

Alchemists, it

does not

particularly

contribute to

novel

gameplay.”

25

http://antoniosliapis.com

In order to explore different uses of generated content in board
games, I designed a game ultimately titled Alien Transmission where
symbols are generated and players must use them to communicate
information to each other. This 4-player game has a science-fiction
theme and hinges on co-operation for survival against an external
invasion. Each player controls one sector of a solar system with two
planets (one outer, one inner) and one starbase. Planets can hold
population, fortifications or infiltrated aliens, while starbases can
hold spaceships. Planets with no population are considered fallen,
and if all players' planets fall the game is over. In the current
prototype, players must choose one action per turn (from a set of 12
actions) and choose one of their two planets or neighboring sectors
where this action is issued. Actions include building spaceships to
send to the starbase, sacrificing population to guard against alien
threats, sending population or spaceships to players of neighboring
sectors, etc.

Actions are taken in response to upcoming alien threats, which may
add infiltration tokens to planets (replacing population, if the planet's
capacity is full), remove spaceships or population under
circumstances (e.g. if there is no fortification or if there is an
infiltrated alien on a planet), halve a planet's population unless a
quarantine player action is taken, etc. Each player places one action
card face down on the relevant planet or neighboring sector on their
control panel. Players reveal their action cards simultaneously
during the resolution phase, after the alien threat has been shown.
Players win if a deck of 20 alien threats is depleted and at least one
planet has not yet fallen.

While the board, player actions and randomized alien threat deck are
reminiscent of many co-operative survival games such as Pandemic
and Arkham Horror, the key mechanics of Alien Transmission revolve
around one player's advance knowledge

26

27

of the threat and their efforts to warn some or all players. In every
turn, one player reads the next alien threat card and must choose
which player(s) and which message to transmit to them in order to
take the right actions to counter it (if possible). The message itself is
where procedural content generation comes in: messages consist of
one or more symbols with no meaning ascribed beforehand. The
symbols themselves are in black and white and generated via
cellular automata with the occasional hard-coded symmetry,
rotation, reflection etc. [The codebase for generating your own
symbols, and other possible uses, is found at
https://github.com/sentientdesigns/aliensymbols.]

A pool of 12 different symbols (with duplicates) is available to all
players in each game: players may need to develop a common code
to decipher them through prolonged interaction during the same
game. Players are not allowed to speak — at least not to discuss the
symbols themselves or talk about the alien threat. As an example,
the first player may wish to notify another player about an
upcoming alien virus threat to that player's inner planet: they choose
a vaguely skull-shaped symbol and a teardrop-shaped symbol for a
message transmitted only to that player but visible to all. Even if the
other player fails to decipher it and counter the threat (e.g. via a
quarantine action), during resolution all players see the alien threat
card and figure out what the message was about. Optimally, other
players should use the same symbols in their turns if they wish to
communicate a virus attack (although message details such as the
planet it is aimed at may change).

The role of procedural content generation in this game is not to
randomize the initial state or to handle game-state progression (both
are handled in a traditional way by shuffling the alien threat deck).
Finding patterns in the randomly generated symbols (ambiguous
black splotches on white paper, much like Rorschach tests) and
constructing a common language out of them is the core challenge
and the core mechanic of the game. Deciphering or combining

https://github.com/sentientdesigns/aliensymbols

ambiguous images or semantics has been used in boardgames such
as Dixit, Codenames or Cards Against Humanity, and forming a
co-operative shared lexicon of abstract visuals is vital in Mysterium
and Codenames: Pictures.

Alien Transmission uses generated abstract symbols instead of
pre-authored ones, although admittedly the same could be
accomplished by running the algorithm once (producing many
symbols) and using a combination of 12 symbols in each game [This
was how the playtest version for the Global Game Jam took place, as
printing and cutting new symbols on the fly required too much
downtime].

Notably, the generated black-and-white symbols are much more
abstract than the evocative, colorful images of Dixit or Codenames:
Pictures which are grounded in real-world representations (however
dream-like). The more abstract nature of the symbols, the lack of
real-world grounding, and the underlying algorithmic principles
(smoothened curves due to cellular automata, emergent dots and
splotches, symmetries and rotations) need to be incorporated into the
players' association between perception (the visual symbol) and
cognition (the underlying message). Generated content thus becomes
part of the "grain" that players need to work with to win as it directly
affects the core mechanic (transmitting a message).

Find the prototype cards, board and manual for Alien Transmission
at http://alientransmission.antoniosliapis.com.

28

http://alientransmission.antoniosliapis.com

By Sabine Wieluch

http://www.bleeptrack.de | @bleeptrack

"So, yesterday I read the awesome article about generative art by
@GalaxyKate and now I'm sitting at home, writing a script creating
bugs. Like, literally bugs."

This was the tweet I posted earlier this year along with two images,
containing a grid full of white bugs with black outlines. I would not
have imagined getting such a huge and positive response.

After stumbling over GalaxyKate's great talk and blog post about
generative art and her procedural flowers, I finally wanted to write a
generator by myself. Something nice to look at, with easily
recognizable shapes. But what exactly? Leaves? Too boring.
Butterflies? The wing pattern might be too complicated to begin
with. But beetles sounded right to me: They differ enough to be
interesting and the 6 legs, 2 feelers and 2 wings make them easily
recognizable.

The next evening I had two hours of spare time, because I waited for
a conference call. So I opened Processing and began to think about
how the beetles should look. Processing was still rather new to me,
as I only used it for some simple generative art projects. But it
supports Bezièr curves and I had lots of experience with them
through extensive Inkscape usage.

So, I started with 5 points to generate my first shape: the center, the
neck (where the head should be positioned later), the left and right
shoulder points and the bottom. For these I could define the first
parameters: the distances from the 4 points to the center (both
shoulder distances are the same) and the Bezièr handle lengths of
the neck and bottom points. To find the right parameter bounds, I
just tried increasing or decreasing the values until the body started
looking weird.

29

http://www.bleeptrack.de

Now that I had the body, I continued similarly with the wings and
feelers. The head only is an ellipse. And finally the legs: they consist
of two rectangles and a row of triangles. And now the beetle shape is
finished - yay! Over all, there are about 50 parameters.

Because of the great response to my tweet, I decided to keep going
and give the bugs a colored version. Actually, this was the harder
part. First: wing pattern. Two pattern ware created very fast: one
which consists of small, random placed little dots, the other one
consists of concentric rings with the center at the wing center point.
But, dots and rings were not exciting enough. So I decided to create a
pattern made of wavy lines. Here I had lots of parameters to fiddle
around with and a huge variety of wing pattern grew from this
method. This is the part I am most proud of in retrospect.

Second: choosing colors. At first, I wanted to choose a random color
and then color the different body parts in decreasing saturation. This
looked nice, but again I thought it was not exciting enough. So I chose
a second 'highlight' color for the wing. This looked better, but not
really harmonic. Next, I calculated the gradient between the colors
and used the in between colors for the non-wing parts. This looked a
lot better, but because I choose the HSB color space, I often generated
dark beetles and I wanted them to be more colorful. This happened,
because in HSB color space, the saturation parameter goes from
'black' to 'bright color'. So if the random saturation value is low, the
other values don't matter anymore: the result will be blackish. Gladly
the resolution for this problem is simple: I switched to the HSL color
space.

Now that the beetles can be generated, I started creating fun
applications: first the twitter bot @beetlesbot that generates a new
beetle every 6 hours and adds a nice generated name to the

30

“Now that I had

the body, I

continued

similarly with

the wings and

feelers.”

http://twitter.com/beetlesbot

31

 bug. To create this bot, I had to port the whole code to p5.js
(javascript version of Processing). And to make a nicer image, I
added the wing pattern in low opacity to the background. This
improved the bot images a lot! I made pen plotter plots, and
therefore had to rewrite the whole code again in paper.js and find a
new way to generate the wing pattern. I printed stickers, t-shirts and
fabric to make shawls from it and I have lots of other ideas what to
do with my new little friends.

If you want to play with the generator yourself, I recommend visiting
beetles.bleeptrack.de where you can generate them yourself and
play around with the parameter sliders.

https://beetles.bleeptrack.de/

32

By Gorm Lai

@gormlai | http://www.gormlai.com

This September I’ll be starting a PhD at Goldsmiths in London as part
of the IGGI programme. I am going to research algorithms that can
empower more people to become character artists and animators
through the use of procedural tools. When I excitedly tell my artist
friends in the games industry about this I often get the reply :”So are
you going to take my job away?” Even though it is meant as a
friendly and funny remark, we all see how automated tools
transform and change not only our industry, but nearly all parts of
21st century society.

As makers of something that makes something, we participate in
bringing of some of that aforementioned change. Whether it is a
procedural terrain generator to empower game developers to make
more or higher quality content faster or someone constructing 3D
printers to build houses, the change that we bring, affect the people
in those businesses.

While procedural tools can be incredibly empowering, they also take
work that was previously done manually, and transforms it, so the
work is either fully automated or will require a different set of skills
to perform. For an easy to understand example, think about building
a house. Building a house requires the combined skills of many
people; architects, engineers, plumbers, bricklayers, carpenters,
painters, etc., but if we can 3D print an entire livable house, then we
might be able to leave out the bricklayer and carpenter and we’ll
instead need someone with a different set of skills to operate the 3D
printing equipment. We will also need a modified supply chain for
building materials, as instead of bricks, mortar and wood, we’ll need
a supply of 3D printing materials.

While we can argue there are numerous advantages to 3D printing a
house (a machine can work 24-hour days and it is much cheaper
overall) or a procedural tool for game developers (it might be

“While we can

argue there are

numerous

advantages to 3D

printing a

house…”

http://www.gormlai.com
https://www.theguardian.com/technology/video/2014/apr/29/3d-printer-builds-houses-china-video

 possible to knock up an interesting test level in minutes versus
hours or even days), it is also possible that it will push some people
out of the job market or at least require them to re-skill significantly
to stay competitive.

Makers; whether they make medicine, cigarettes, guns, candy bars,
self-driving cars or in our case, something that makes something,
must take responsibility for their creation. If the creator of a gun or
pack of cigarettes can be made accountable for its use, then so can a
programmer for their software. That means if a piece of software
allows someone to create something for the first time in their life
because that software helps them to be creators or encourages a
company to optimise their work processes, then both those cases
bring change to society, and we are part responsible for that change.

We not only have to think about how people can best use our
programs, but also the societal change that the software brings. If
fewer artists are needed to make a game, what happens to those
artists now? What about factory workers as we are able to make cars
in an increasingly automated way or construction labour if 3D
printed homes become more commonplace? Is it always realistic to
retrain people to other jobs? If yes, who pays for the training? If no,
then what does society do with those previously employed people? Is
it sometimes better not to invent something that improves our lives
in certain areas or optimises production flow, if it has the potential
to be too disruptive in other areas?

I have a my own set of answers for those questions, but this essay is
not about that. The intent is to spark a discussion and make us
realise our wider responsibility as makers of something that makes
something.

33

https://corporate.ford.com/innovation/100-years-moving-assembly-line.html
https://corporate.ford.com/innovation/100-years-moving-assembly-line.html
https://www.engadget.com/2017/03/07/apis-cor-3d-printed-house/
https://www.engadget.com/2017/03/07/apis-cor-3d-printed-house/

34

By Johan Rende

@Tokjos | https://jrende.xyz

The first procedurally generated piece I made was using photoshop. I
felt that I lacked artistic skill, so I started with a cloud then added
filter effects and blending modes until it looked good.

Using photoshop for that felt like overkill, so made a web application
of that specific workflow. The result was filter stacker
(https://jrende.xyz/filterstacker/). It was very limited in what you
could do with it, but you could still create some nice images with it.
Many years after, I noticed that I had started doing something
similar with Blender: I would create a 2D square, and just add nodes
to create interesting patterns on it.

I love starting ambitious projects of unclear usefulness, so I decided
to create a web app of that workflow as well.
https://jrende.xyz/pattern is the result. It is a node-based editor for
creating 2D images, using WebGL for the rendering and ReactJS for
the interface. It lacks a lot of features and polish, has a lot of quirks,
and the only user the interface is friendly towards is myself.

Right now, I’m not sure what direction to develop it in. One is to
improve the usability, make into a proper tool, like a web alternative
to Substance Designer. The other path is to double down on its
quirkiness, let it be purely for fun.

One “feature” is how gradients disregards aspect ratios. When you
resize the browser, some parts move differently creating an
animations of sorts. If I wanted it to be useful, I would squash that
bug. But effect looks very cool, and I love how a bug can look
beautiful.

Another inspiration is glslsandbox.com. In the future, I want my it to
have the same invisible user system with the ability to fork images
and track how popular ones are copied and modified in multiple
generations.

“Right now, I’m

not sure what

direction to

develop it in.”

https://jrende.xyz
https://jrende.xyz/filterstacker/
https://jrende.xyz/pattern
http://glslsandbox.com/

By Antonios Liapis

http://antoniosliapis.com | @SentientDesigns

Living in the Information Age, we are surrounded by news, facts,
propaganda, and advertisements. We are bombarded with
information from TV screens in bars or from wall projections on the
subway, and we can look up any type of obscure information on our
phones within seconds (thus ruining trivia night). There are
community efforts to fact-check and compile information in sites
such as Wikipedia, PolitiFact or the Europeana collections. There are
also far less noble efforts at using consumers' interaction data to
target them with messages of all kinds. While games exist in all types
of devices, we do not often think of games as sources of information
--- least of all factual. However, games can take advantage of all this
information available in repositories, websites and social media to
create new ways of engaging players as well as disseminating
information during gameplay.

35

http://antoniosliapis.com

Gabriella Barros, Mike Green, Julian Togelius and I designed a game
which takes advantage of information on open data repositories and
transforms it into an adventure game. The game is called ``DATA
Agent'' and the player is an agent of the Detective Agency of Time
Anomalies (DATA) tasked with solving a bizarre mystery. An assassin
has traveled back in time and killed a famous person, masquerading
as another famous person somehow related to the victim. Since the
assassin does not know everything about the person they
impersonate, the DATA Agent must find in a lineup of suspects which
one does not have all their facts right. The correct facts about the
suspects can be found by talking to other people in different cities.
Finding the suspects themselves is no easy task either: the agent must
talk to other people, read books and break into dark and locked
places.

Most of the game mechanics in DATA Agent require the player to
interact with real-world data, transformed into game elements such
as locations, non-player characters, items, books and facts. The
centerpiece is the murder victim, which is chosen by a designer
before the game is generated. Around the victim, the generator starts
by finding possible suspects among people with Wikipedia articles
that share as many common attributes with the victim as possible
(e.g. the same birth date or the same thesis advisor) but also have
different attributes with other suspects. Once suspects are found, one
of them is randomly chosen to be the culprit (the time-traveling
doppelganger) and one of their facts is changed. Each suspect is
linked back to the victim through a chain of entities in the Wikipedia
knowledge ontology (essentially, finding the degrees of separation in
Wikipedia:
https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia);
those links are transformed into in-game characters or books, placed
in locations around the world based on their origin (e.g. their
birthplace) or places found in the chain. Dialog with characters is
generated based on templates to point to the next clue (unlocking a
new character, item and/or location) but can also provide some

36

https://en.wikipedia.org/wiki/Wikipedia:Six_degrees_of_Wikipedia

37

 information about the character (such as their date of birth or
subject). Finally, some puzzle elements are added by ``locking''
some locations and ensuring that ``keys'' can be found by the player
(torches to unlock dark places, crowbars to unlock chained places).

As expected, adventures generated by the DATA Agent algorithms do
not always present a challenge --- or make sense. Suspects are
usually connected to the victim, for example the suspects for the
murder of Albert Einstein are all physicists. On the other hand, some
of the falsehoods used to pinpoint the culprit can be obvious from
common knowledge without playing the game. Some of the chains
leading the player from the victim to the suspects also take bizarre

paths, for instance talking to Caligula and Khrushchev to find where
the suspects of Frank Sinatra's murder live. Errors in the actual
Wikipedia knowledge-base (DBpedia) can also lead to absurd results
such as a non-player character named Argentina in the case of Louis
Armstrong's murder (Argentina is of type ``person'' in the DBpedia
ontology, leading to this error). You can find out more bizarre
outcomes, and play 99 generated adventure games by downloading
DATA Agent from https://champchampchamp.itch.io/data-agent.

DATA Agent is far from perfect, but its aspirations are worth
examining. Using real-world knowledge through open data
repositories allows games to be more relevant and closer to the real
world, recent news, or trending web searches. Trying to show the
``degrees of separation'' in Wikipedia articles through a playful
environment and a murder mystery narrative

38

https://champchampchamp.itch.io/data-agent

39

(however absurd that is) requires both the generator and the player
to rationalize why these links exist. DATA Agent transforms
information of real-world people for the game, changing their
time/place of death (for the victim) or blaming them for a murder
they did not commit (the culprit); it explicitly states that history has
been changed by a murder and a time-traveling doppelganger
masquerading as a real person. However, in different scenarios
(beyond murder mysteries, most likely) the real-world information
could be kept intact within the game to allow players to explore
real-world information, even for learning purposes. Using other
sources of contemporary or opinion-laden snippets such as trending
Twitter topics or activist websites can result in games rich in critique
and conflicting viewpoints (but possibly sparse on facts, and thus
unfit for learning). Games that highlight and expose data can even be
used to debug or fact-check the original repositories, closing the
feedback loop by correcting the knowledge-base that game assets
were built from.

In short, DATA Agent is only one instance of how a semantically rich
and narrative-heavy game built on real-world data can be used for
entertainment, data visualization or critique.

Relevant readings:
Michael Cerny Green, Gabriella A. B. Barros, Antonios Liapis and
Julian Togelius: "DATA Agent" in Proceedings of the 13th Conference
on the Foundations of Digital Games, 2018.
Gabriella A. B. Barros, Michael Cerny Green, Antonios Liapis and
Julian Togelius: "Data-driven Design: A Case for Maximalist Game
Design," in Proceedings of the International Conference of
Computational Creativity, 2018.

Website:
https://champchampchamp.itch.io/data-agent

40

https://champchampchamp.itch.io/data-agent

By Mark Rickerby

https://maetl.net

There is no universal method of representing writing with
computers beyond strings, which are linear sequences of characters.
To create writing generators that operate at the level of narrative
structures or use expressive, persuasive and literary elements of
discourse, we need to think carefully about how we represent these
latent aspects of the text. The way we represent these hidden
structures is an important force in shaping what we can do with the
generator.

41

https://maetl.net

One way to think about this problem is to look at generated writing
as a series of layers or rock strata, moving from the low level atoms
of language, from phonemes, letters and words, up to the higher level
of meaning in sentences and paragraphs, and larger groupings like
passages and chapters. Building on top of these layers leads us to
representations of narrative, through elements of discourse, tone,
characters, and plot structures. In concrete terms, we can look at all
these components of writing as a tree formed out of the different
levels of structure found in a text.

This model is immensely helpful in tackling the complexity of text
generation. It makes it easier to understand the different methods of
working with generated text by thinking about what what level they
apply to.

Another way of thinking about this model isn’t so much about the
levels themselves, more about the direction we’re operating in —
whether we’re ascending or descending through the levels.
Depending on which path we take, we end up with very different
levels of control over the resulting text.

We could be starting with structure — plots, themes, tropes or
narrative archetypes — and figuring out how to turn that structure
into text by working down towards sentences. Or we could be
starting with a large corpus of existing texts, working from the
smallest pieces of syntax with sense and meaning being emergent.

It turns out these aren’t just ways of classifying generative writing
methods, but also AI philosophies that define the way we approach
authorship.

The symbolic approach is about templates and top-down
organisation, encoding our formalist ideas about the rules, patterns
and constraints we want to apply to a piece of writing. It’s more
intentionally directed and crafted, but also potentially complex and

42

“Right now, I’m

not sure what

direction to

develop it in.”

43

requiring a lot of manual effort to get right.

The statistical approach involves turning text into data that we can
operate on mathematically, and processing it using algorithms that
aren’t traditionally associated with natural language or text.
Statistical methods usually avoid encoding rules about language or
rules about narratives and plots. They treat text as a distribution of
probabilities. It’s more akin to musical sampling and remixing than
anything associated with traditional writing.

A lot of generative writing in recent years tends to cluster around
one or other of these poles, exemplified by the weird and wonderful
experimental works coming out of #NaNoGenMo and PROCJAM
which are often made using a single specific method.

Every generative method is captivating and interesting by itself, but
it’s important to emphasise that the tradeoffs between these methods
are not an either/or proposition. They all have different strengths
and weaknesses, and operate at different levels of the writing
process. Statistical methods require meticulous corpus selection and
pruning to get right, while symbolic methods require a big
investment in modelling and design.

There are fascinating possibilities for building writing machines
composed by multiple generative methods, each addressing a
specific level of language or narrative, with their inputs and outputs

 feeding one another. Think of a Markov chain name generator
embedded inside an expansion grammar that generates story
fragments. Or a machine learning model that generates a plot which
is filled in by templated sentences and entities from a world model.

As always, the needs of the story shape its generator, while the
generator determines the limits of the story that can be told. In
generative writing, the author is not effaced so much as working in
collaboration with the system. Whether this involves curation,
pruning, parameter tweaking or writing microcopy and sentence
fragments is totally up to our imagination and creative vision for
what we want to produce.

44

By Damien Crawford

http://cannibalinteractive.itch.io | @DeveloperDamien

I was working on a game during the summer that involved
managing a guild and doing paperwork in order for your adventurer
to be able to do anything. I was considering how to set up things like
quests, local characters and shops; the local stock market for trade
goods and such, and so on — but I wasn't sure what guidelines I
wanted, or where I even wanted to start.

Then I heard that PROCJAM Summer '18 was about to start, and
decided to use it for inspiration. Making a twitter bot (using
cheapbotsdonequick.com) for an hour every day fit with my work
schedule, and wouldn't be hard to have quick and tangible results.
For the sort of information I wanted it to generate, the theme of a
newsroom that reported on incidents and goings-on sounded
interesting.

Thus began the concept for the Fantasy Newsroom Bot
(@RPGNewsroomBot). After doing some research on how other
people put their bots together, I started looking at actual news shows
and considering what to make it report on. One of the big goals was
to have quest concepts, but I felt like that was a narrow topic and
wanted to make it more like a proper newsroom report, so that
category was renamed “Employment”. With that category, I could
also talk about specific regions that are looking for certain classes to
participate which worked really well with my original game's
concept. Weather reports are common on the news, so I added that
in too; since I'm working with potentially magical weather, I also
made the reports mention what sorts of impact on trade and magic
that the weather affected. More report topics like politics, crime, and
celebrity news were added too.

From there I had to figure out a generation method for the reports
that was coherent enough to sound like a proper news report, but
still random enough to be interesting.

45

http://cannibalinteractive.itch.io
https://cheapbotsdonequick.com/
https://twitter.com/RPGNewsroomBot

The first report I wrote was this:

"In Weather today, #itempre.a# #weathertype# #weatherentry#,
#eleeffect# #percent#%."

The news reports for weather always start with the same
introduction; the terms in between the hashes are what categories
the words it uses are pulled from. #itempre.a# pulls a word that
makes sense for an item prefix (Flaming, Astral, Iron, etc.), as well as
putting an a/an in front of it. #weathertype# picks a type of weather
system, #weatherentry# picks a way for it to show up, #eleeffect#
picks what elemental type is affected and in what way, and
#percent#% picks a number and adds a percent sign behind it. A
report generated with this setup looks like this:

In Weather today, a patient tornado materialized, increasing Ice-type
skills' power by 75%.

From there I focused on making three types of reports for each
category for variety's sake, and adding more vocabulary for the bot
to draw from. By the end of the jam it had about 16 different report
types, and a lot of different ways for them to go.

As I continued to add to the bot it grew away from my original
concept (to help with ideas for a game) and became its own project
that I still add to from time to time. It now invents names of
dungeons and magical diseases, and more is added every now and
then. I do think that it would be interesting to make a game that
actually uses it in some way, as some of the things that it comes up
with are amazing and nothing I would ever have come up with on
my own. However, I'm glad that this bot has become its own
stand-alone creation, and I'm glad to have made it.

46

“I'm glad that

this bot has

become its own

stand-alone

creation, and I'm

glad to have

made it.”

By Dan Cox

http://videlais.com | @videlais

Many people know Twine as a good tool for creating quick narrative
games in HTML. With its story map view showing the connection
between different sections it makes for a great first-time tool for
people making games. Yet, what is often forgotten when thinking
about passages, the internal units of Twine, as sections of a story is
that they are also an internal form of storage.

Twine works by embedding its code and content into the same HTML
document. When run by a browser, the code is read and transforms
its elements into a story. As the player progresses through the story,
the content of different passages are shown through reading from
the elements in the HTML document.

This little detail about how Twine runs is important to remember
because story formats like SugarCube, one of the three built-in story
formats with the current version of Twine, come with functionality
to retrieve the text content of passages while it is running. As HTML
elements themselves, this passages content can be retrieved and
even changed. And this makes them the perfect place to place data
for a story within the story itself.

The string data type in JavaScript comes with a function to split a
string into an array. Named <String>.split(), it takes a delimiter,
something to mark one part of a string from another and returns an
array of all of the items. Used with the function to get the contents of
a passage, a long list of text data can be split into an array and then
used within a story. Working just like Twine itself, the contents of
passages can be inflated into memory as internal databases of
names, places, or parts of things to drive more complex operations.

Through getting the contents of a passage, splitting it into an array,
and then accessing its entries, it is possible to get a random entry to
drive procedural generation systems. Combining these simple steps

47

http://videlais.com

with more complex rules, picking and combining things, for example,
could drive even more complex integrations where one database of
entries is picked at random and used as a seed for other operations
and choices.

At the same time, Twine also comes with jQuery, a JavaScript library
for navigating the representation of a HTML document as its
Document-Object Model (DOM). Through using this library, the idea
of using passages as storages can be taken to its logical extreme:
passages, because they are represented as elements in a HTML
document, can be added and changed while the story is running.
Using the ability of JavaScript to change the properties of objects in
memory, the story format SugarCube can be hacked through adding
HTML elements using jQuery and then adding new internal passage
referenced to its internal representation. Through combining jQuery
with SugarCube functionality, it is possible to have a story build itself
in real-time, reading and writing new code into HTML elements and
linking to it internally through its JavaScript representation. Having
the potential of building off of passages as forms of data and tables, it
is possible to create a bare HTML document of different collections of
text where code re-writes the HTML document in memory, creating
new connections, parts, and generating new connections based on
the code reading and rewriting itself through JavaScript, jQuery, and
knowledge of how Twine handles its own internal storage.

While Twine can be thought of as a tool to create more
heavily-authored stories, it can also be used to create complex
procedurally generated content as well. Through recognizing that a
Twine story is a HTML document, it can be treated as both something
to read and something to write. Combining knowledge of how Twine
works with more advanced JavaScript usage, Twine can be morphed
into creating stories that can write themselves, building off of rules,
databases of text, and the inherit properties of hypertexts to connect
to sections within themselves.

48

“Through using

this library, the

idea of using

passages as

storages can be

taken to its

logical

extreme…”

By Martin O'Leary

http://mewo2.com | @mewo2

On September 13th 2017, I started a new project.

Every day since then, I’ve sat down and produced a “sketch”, a small
piece of generative art. Each piece takes the form of an 800x800 pixel
image, which I post on a dedicated Twitter account
(@mewo2sketches).

Many artists, across all kinds of artistic disciplines, do daily projects.
There are lots of benefits to this kind of practice: it keeps your mind
in a creative place, it lets you try new things in a low-risk way, and
over time you build up an impressive portfolio of work. At the same
time, having a side project like this can be really helpful
psychologically when you’re stuck on a long-term project, or when
you don’t have time to work on anything bigger.

I find generative art is particularly suited to this kind of daily work.
If I only have a few minutes one day, then I can tweak a few
parameters from yesterday’s work, and create a whole new image
with only a little bit of work. If I have several hours, I can
experiment with new algorithms, and make something new and
exciting. Either way, I have something new to show before I go to
bed at night.

I want to give some advice for if you’re planning to do this yourself.

49

http://mewo2.com
https://twitter.com/mewo2sketches

Start Now, While You’re Excited

When I first had the idea to do daily sketches, my thought was that it
would be a great New Year’s Resolution. The problem was that it was
still only September, so I’d have to wait four months to get started,
which was kind of discouraging. It took me a few days to realise that I
could start any time I wanted, and that waiting would just mean my
enthusiasm would drain away.

The first week or two, I was really jazzed about the whole idea, and I
put a lot of work into each piece. Then, as always happens, I hit a
patch where I had less motivation. Having already built up a little
stack of sketches, I didn’t feel as much pressure on the newer ones. I
knew that some would be good, some would be bad, and that each
individual piece was less important than the project as a whole.

50

51

Make Your Own Rules

When I started, I set myself a few rules:

* One piece per day, no more, no less
* Ignore the clock, a day is between waking up and going to sleep
* I can stop any time I want, but I can’t skip days
* Everything is code, no external data sources
* No text, just graphics

These are my rules though, not yours! Constraints like these are
really important and useful, but they have to be something you
choose for yourself.

Work In Public

It can be a bit rough, putting stuff online which you haven’t spent a
long time on, which maybe isn’t as polished as you might like.
There’s a temptation to keep this sort of thing private. Obviously I
can’t stop you, if that’s what you choose to do, but I’d really
encourage you to post your work publicly.

Putting your work online has three main roles. It gives you positive
feedback - those likes and comments will be a great boost when
you’re feeling down about the project. It also gives you
accountability - you won’t be as tempted to skip a day when you
think other people are going to notice. Finally, it means that you
build up a public record of your work, which you can point people at
when they ask.

52

By Spencer Egart

http://zeno.itch.io

These sprites were generated to be used as spellbooks in a roguelike
game (Lore of Rune Era). The process for their generation is pretty
straightforward — a series of image layers, each of which can have
one or more possible sprite, are colored and drawn on top of each
other. This allows for variation in the shape and details of the sprite
— some of the books have different bookmarks or clasps, for
example, and vary in color.

Each book is also given an icon for the cover, which is generated
simply as a purely random (50% chance to be on or off) grid of pixels
mirrored over the X and/or Y axis. Over the small size used here —
just 5 x 7 pixels — this results in intentional-looking icons.

In the context of the game itself, the book sprites can be controlled to
give a visual indication of their contents, so that a book of fire spells
could be primarily red and orange, a book of healing spells could be
white and gold, etc. My current work here is to extend this type of
sprite generation to other types of items such as weapons, armor,
and potions.

http://zeno.itch.io

By Davide Ciacco

https://ciaccodavi.de/ | @ciaccodavide

Most of the time I hear people around me talking about procedural
generation only as an algorithmic alteration, or generation, that grants
some things a wide variety — and that is a very important feature!

If used wisely, procedural generation can provide our games with art,
music and events which work together to make them always engaging,
interesting and replayable. But, this "variety", if leading to excessive
randomness, can be unsuitable for certain situations.

In some games with procedurally generated levels, especially if a
leaderboard is present, every player should be playing the same exact
level so that the score is fair against other players results. In these cases
procedural generation should grant both variety and reproducibility.

A couple of real examples: in my game "Idle Duels" there are procedurally
generated armors and swords (in pixel art) and the enemies encounters
happen in the same order for every player, they have the same statistics
so that the position of a player in the leaderboard is fair.

53

https://ciaccodavi.de/

The same thing happens in my game "Pepidox", a simple game where you
have to avoid obstacles. All the levels are procedurally generated, but the
colors, the obstacles positions and properties like speed or density are not
random! Every player will have to face the same challenge that each other
has.

I'm currently working on a game that features procedurally generated
music, I will probably choose a certain seed to generate the main menu
music because, while variety is good, sometimes is better to reproduce the
same thing for everybody to make it recognizable.

The reproducibility aspect of procedural generation can also be very useful
in multiplayer online games, where some events and contents can be
procedurally generated reliably on all the player's devices (the clients)
connected to a certain match, without the need to exchange data with the
server.

54

By Guerric Haché

https://guerric-hache.itch.io/ | @GarrickWinter

The pitch is easy! Generate a complex world with dynamic societies,
like what you’d find in Endless Legend, then play in it as a single
character like you would in Skyrim.

That pitch is the last remotely easy thing about the idea. But, after
generating worlds as a hobby for years, I’ve found some approaches
slow me down more than others. One I think I’ve possibly just
understood is the deceptively sensible pursuit of realism.

Intricate world generators have long amazed me — from plate
tectonics and erosion to wind flow and temperature gradients,
people put enormously impressive work into these things, and for
many years I tried similar approaches to generating complex,
interesting worlds for hypothetical RPG-like games.

But I was never satisfied with the results. Despite multiple layers of
simulation, they felt generic, with ecological gradients smeared
across large distances and no clear sense of distinct regions or
places. Each little generator eventually suffocated under increasingly
complex code that was difficult to maintain or debug, and I moved
on. I enjoyed building generators, but why didn’t the results feel
right?

I figured it out after a brief return to World of Warcraft in 2017. I
hadn’t played since before Cataclysm radically altered Azeroth, so
the leveling experience was wholly different. I spent a lot of time
contemplating my emotional reaction to these changes to a world I
had once loved, and something struck me.

Azeroth stops even pretending to realistic geology and climatology
on any scale larger than what the player generally encounters
on-screen. Zones are ludicrously segmented by rectangular
mountain ranges, humidity and precipitation and rivers are slapped

55

https://guerric-hache.itch.io/

wherever convenient, and there’s very little gradation between
ecological zones. And as I traverse that world, I don’t care — I love it.
What matters is the player-scale; the zone’s unique combination of
colours, art, music, narrative, and themes. Together, they create a
sense of place and make the experience of exploring a new zone or
town a distinct, compelling event.

Or did, before Cataclysm. The non-realistic, characterful world design
of old Azeroth only became obvious to me as I parsed my viscerally
negative reactions to world design post-Cataclysm. Cataclysm, it turns
out, hacked away at zones’ individuality and grafted on generic lava
and fire, generic Alliance-versus-Horde narratives, and generic
militarized characters and architecture — the same generic stuff
across multiple zones. That last part is key — aesthetic and narrative
bleed between zones increased dramatically, making individual
places feel less, well, individual.

What did this teach me about generating worlds? Two things. First,
worry less about simulating reality; at player-scale, global realism
counts for little. A RPG player primarily experiences individual
places, not orbital world maps, so it’s individual places that need to
be most interesting.

Second, worry more about differences and distinctions between
places. Gradual, irregular gradients across dozens of kilometers may
be realistic, but traversing them on foot won’t yield many memorable
moments of suddenly being somewhere else. Contrast is a powerful
tool for creating those moments, and for geography I’ve found two
helpful principles for contrast: deliberate consistency within a
region, and deliberate differences between regions.

My next generator takes these to heart, and I’m already happier and
more confident in the results than I ever was designing simulationist
generators. It divides the world into arbitrary zones, simulates
climate and geology on a zone-level only, then works on reinforcing

56

“What did this

teach me about

generating

worlds?”

57

those two principles - internal consistency, external heterogeneity.
Zone climate and geology are consistently applied within the zone,
while the generator tries to ensure adjacent zones are different from
one another.

I’ve achieved compelling results with - here’s the best news for a
hobbyist - far less work than any previous approach. Any point in
one region will be significantly different to a point in another region,
and the code is easy to work with since there are no granular
simulations. In fact, the workflow and results are so compelling I’m
already moving to the next step - feeding these worlds into a
functional 3D game with a controllable avatar.

Realism as a concept is often lionized, and its benefits can seem
obvious from the orbital view of many map generators, but realism
often isn’t the quality that actually brings us joy in games. Vanilla
WoW’s world with its unique zones resonated with me, regardless of
its rampant affronts against physical geography, because it created
places and moments that made an aesthetic impact.

So that’s the idea I’d like to leave you with. In addition to real-world
counterparts to thing you’re generating, take some time to consider
the gameplay experience you want your procedural content to
support. Play the experience you want to generate, then ask yourself
what makes that experience special, and try to grasp those qualities
algorithmically. You might just find a new angle for tackling your
own outrageous procgen ideas.

58

By Pol Clarissou

http://polclarissou.com

http://polclarissou.com

59

60

By Jasmine Otto

http://jazztap.github.io/exul-mater/ | @jatazak

Liner notes on a lacunic genre fiction, initiated this Summer
Procjam.
https://jazztap.github.io/exul-mater/

mere juxtaposition
Consider the narrative coloring of an illustration by its adjacencies.
Allow those gaps [1] which expand this space of interpretation.

the hanged woman, a saint | the devil, her apprentice

the magician, unmasked | the devil, in her armor

61

http://jazztap.github.io/exul-mater/
https://jazztap.github.io/exul-mater/

There is plot already. The reader authors it without conscious effort.

We would extend this technique, derived by designers from the
Kuleshov montage. Leaning on mythology lets this demo be concise,
but setting-knowledge in general is expensive. Our approach is a
demake into text.

'Exul Mater' is a proof of approach, in the form of a fanfiction (er,
'myth-making practice'), using the prompt-generation techniques
described here.

Act III - Transcript
...now that you have rank. How did you gain that?

By denying the enemy their agent, at the same time faking your own
death.

She fell from the sky like a star. Shouldn't have let you on the
transport shuttle, to be fair.

Let's examine the tempering effect of The High Priestess (aligned w/
winter, the harsh aspect of proving) compared with Judgement
(aligned w/ moth, the fitful aspect of unknowing).

knock

"You know, savages aren't meant to be carved from marble." Her
hand slips quickly from your too-heated grasp. She'd pass for
Imperial - not that all citizens are pale.

"Did they tell you our hearts were cold, devoid of human feeling?"
Idyll doesn't even blame you. "That if we created, it was only for
practical purpose? I am sorry."

grail

62

63

As the world is divided into evening and dawn, so we gave the
wandering star two names, and it became divided. They will know
you by your faces, which are your kith and kin, as you are theirs in
turn.

These are the tokens, which stock our proper nouns with their initial
state. Across all tokens, the entire cast is represented. In both
renditions, the same passage (knock/grail) will appear, with different
adjacencies.

knock / winter / grail

The master of a particular Remnant engine, who revealed the ruin
inside a city, had sacrificed only the distinction between persons and
resources. Therefore his assertion, his sum of efforts, was only the
existence of naked power - which pond scum also prove.

The white phosphorus reminds Meletus of their failed apprentice.
The Huntress taught you to handle the the devil's element because of
its use in smoke grenades, not for its effect as an incendiary. Oh well.

You speak to me in riddles, tight knots of self-recrimination. You
fear, or hope, absent lovers' regrets will turn to blame.

You turn from me, and drape the curtains' embrace across your
shoulders. You cannot take mine, or break the illusion.

You are like your mother more than you know. You insist upon your
judgement.

The High King's eldest apprentice, your mother's lover, fell in the
wake of the coup. He'd taken to regret too well, perhaps. He burned
with abhorent martyrdom.

His crimes were not treacherous, compared against hers. His
redemption should have been the High King's curse broken. So what
if he would not be cold? He should have burnt himself numb.

One foot in the Order, which could not see itself hollow,
and one foot out, where its strain could not be exploited.

Soon the actual will match the shattered image.
Rahel uses Idyll for access to Caelum, and her throne.

knock / moth / grail

When she made us shatter(ed by) the collapsing planet, a deep well in
physical spacetime, our general knew then that to remain present,
sensate, would be to die or be destroyed.

Traitor our marshal who broke her own master upon her duty,
Betrayed and Betrayer who brought our general back to slaughter
her own academy.

You memorized your mother's weaknesses while young.

You speak to me in riddles, tight knots of self-recrimination. You fear,
or hope, absent lovers' regrets will turn to blame.

You turn from me, and drape the curtains' embrace across your
shoulders. You cannot take mine, or break the illusion.

You speak of the woman you loved, the woman you destroyed. Did
you join her on the tower steps? Do you regret what she became?

"We must be ashamed to malinger, upon the same old battle lines."
Her husband did say this much to me. Does your cohort enjoy their

64

65

limited grasp of history? You may forget so many useless details, and
never reify them again.

ASK YOUR father whom he could not keep you safe from, that HE
BEGGED for you to be made civilized and civilizer. I think he
understood this goal.

"Seeking ourselves, we'd be as killers, or healers, Rahel!
Which role should I have led, so you'd need not?"

But her child lies beneath Idyll's tree whose roots are cables,
whose boughs are dendrites.

Production

The Parrigues Tarot suite [2] introduces certain desiderata of
generative text. (Similar to Calvino's Memos, except for the
respective outliers Mushroom, and quickness.) As our rubric:

Beeswax (multiplicity)
A human generates all natural language content, **and** enough
world state to indicate 'saddle points' where scenes *should go*.
Other methods of annotating the relationship-graph and other
features of world-state are much slower.

Salt (exactitude)
Scenes correspond to the 28 possible pairs (8*7 / 2) of 8 tokens. In
practice, three ‘contexts’ of 5 tokens each (with 0 or 1 unique to each
context) sufficed to gate repetition of scenes, and produce movement
between alternative world-states (as by the technique of AUs).

Egg (lightness)
We prefer each scene within drabble-length (≤100 words), to reveal
secrets / images (as units of character) one or two at a time. Prose of
shorter length exerts greater juxtapositional force. Occasionally the
third token alters one paragraph, where the ‘triangle closure’ can be
helped along.

Venom (visibility)
Referring to character, a conceit for audience investment. The mere
co-existence of tropes in one well-motivated being is interesting, but
also, irreducible to a single relationship or interaction.

Mushroom (proliferation)
Most visible in plot, a useful lie to reveal the characters' relations. All
causality is ascribed (in the absence of reproducibility – and social
graphs, even outside of heightened narratives, are full of edge cases).
We implement a 'rearrange' slider, so the order of scenes is wobbly,
and the reader may deliberately author this bit.

66

67

tokens

With established proper nouns (including the narrator!), even trivial
sentences may take on special significance. This will help us land the
endings. (It is useful to block in a few endings early on: the richness
of prompts partly arises from accounting for their changes.)

Proper nouns point to characters: human individuals, organizations,
other emergent phenomena, & even useful tools. Character *facets*
are created by multiple readings, their traversal of fragmented roles.

The desiderata of characters are *aspects*, which are a basis for the
subspace of thematic space. I’ve used a pre-existing set pertaining to
immortality, originally in order to understand their off-dichotomy
juxtapositions. Evocative aspects can inform many characters at
once.

endings

Since Exul Mater has three 'factions', each token gives points of
loyalty toward one or two of them. Those kind(s) of point which
predominate determine the ending.

A 'loyal' ending yields an appropriate confrontation, roughly. Split
loyalties are feasible, e.g. resulting in multiple destroyed enemies.

Our ending texts are short - otherwise, they overwhelm the scenes, -
and not very literal. Better that they surface themes that emerged in
the writing, & wouldn’t fit in the title.

scenes

Here is the bulk of the writing. Take each pair of tokens to index a
scene. Every relationship between characters has a tone, many of
which are expressed succinctly in songs. Use songs to prototype

scenes! Use them to find verbs. Do not work from a single word, but a
striking image.

Do not associate songs to *tokens*. If you can't write out a sentence,
it's not yet concrete. If you can, put it in your scene. It's hard to
experience power if you don't smash anything, and other feelings
need similar reification.

Δ closure

Once scenes are drafted, we can exploit the nature of pairs to find a
saddle point (the moment before ‘climactic resolution’) in every
scene.

Given five slots, the first two tokens determine a scene A/B. The third
token determines the remaining scenes {A/X, B/X} where X varies
over {C,D,E}, framing A/B in three possible ways.

By this *triangle closure*, the recombinatorial fiction maximizes its
density of saddle points. How many ways can one scene be read?
Whence the players’ stakes, their motives? Mere context.

The appropriate text editor reveals this information during writing. I
would encourage experimentation.
beta.observablehq.com/@jazztap/ritual

[1] catacalypto.itch.io/on-lacunae
[2] emshort.blog/2018/06/26/parrigues-tarot-draft
[3] www.ice-bound.com

68

http://www.ice-bound.com

By Amin Babadi

@donamin

We propose the concept of intelligent middle-level game control,
which lies on a continuum of control abstraction levels between the
following two dual opposites: 1) high-level control that translates
player’s simple commands into complex actions (such as pressing
Space key for jumping), and 2) low-level control which simulates
real-life complexities by directly manipulating, e.g., joint rotations of
the character as it is done in the runner game QWOP.

 We posit that various novel control abstractions can be explored
using recent advances in movement intelligence of game characters.
We demonstrate this through design and evaluation of a novel
2-player martial arts game prototype.

In this game, each player guides a simulated humanoid character by
clicking and dragging body parts. This defines the cost function for
an online continuous control algorithm that executes the requested
movement. Our control algorithm uses Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) in a rolling horizon manner
with custom population seeding techniques. Our playtesting data
indicates that intelligent middle-level control results in producing
novel and innovative gameplay without frustrating interface
complexities.

69

http://www.youtube.com/watch?v=rnsSWY7HZJA

70

By Genetic Moo

@GeneticMoo | http://www.geneticmoo.com

A superorganism is a big organism made up of smaller organisms.
Superorganism art is a big piece of art made up of smaller pieces of
art.

With readily available and easy to use digital tools, superorganism
art dramatically expresses the powers of collaboration,
communication, critical thinking and creativity.

We recently created a multiple projection piece with the
participation of over two hundred 15-17 year olds as part of the UK's
National Citizens Scheme which aims to give teenagers a range of
skills to make them 'unstoppable' — like the way an ant colony
conquers all before it, and an ant colony is a great example of a
superorganism in nature. The workshops were run over 4 days in
Canterbury, Kent and then we combined all the results together into
a series of generative programs to be projected on a huge scale at a

http://www.geneticmoo.com

local art festival.

But where did this superorganism art idea come from?

For years we had been making interactive art with computers and
sensors and projecting these works into group shows. We started
thinking about how these artworks would interact when there was
nobody in the space, as there is nothing sadder than interactive art
with no audience. We were told to be careful that our projections
and sounds did not leak over into another artist's personal space.
And then we had enough of that — we decided to reverse this rule
and worked with artists who deliberately bleed into and over each
other. Artworks were designed to interact with artworks. Then you
put the audience in the middle and see what happens. Nobody
knows what will happen! Digital Art is particularly good at this — the
outputs change in response to the inputs according to collections of
behavioural algorithms and sensors positioned by the artists.
Combine enough of this together and the resulting chaos can be
thrilling to behold — and can develop a life of its own.

71

We started to think how we could get non-artists involved and
designed a series of workshops where beginners could learn some
creative coding and make small generative animations — unique to
each person. Using the Processing language meant these could be
taught almost instantaneously — in the space of an hour anyone can
create something substantial with a rich variety of output over time.
The next stage is to copy each person's code into a larger container
program and then run all the code snippets at once in a shared space.
By varying each workshop thematically we further enrich the output.
For the Canterbury workshops we used the four elements EARTH,
WATER, AIR and FIRE as starting points for people to experiment
with.

Now as this is a Genetic Moo project we added in some digital
creature design (ANIMATS) and some of our own artificial life forms
(amongst them CORAL and TERMITES) to occupy the shared space
and respond to the ever changing animations and a superorganism is
born.

So, we have designed a system which allows people to make small
parts which come together, combine, and emerge into a larger whole.

72

All the while teaching how easy it is to make little steps in coding
which can be combined into bigger steps which can make a dynamic
and life like artwork. The possibilities are endless and we shall leave
you with a young H.G.Wells's speculations on Early Experiments in
Co-operation:

"The recent work undertaken by physiologists to investigate the
behaviour of the peculiar corpuscles in the body, the phagocytes, lends
colour to this vision. These strange unities wander through the body,
here engorging bacteria, and there crowding at an inflamed spot or
absorbing an obsolete structure. They have an appearance of far more
initiative and freedom than a factory hand in the body politic. It is as
startling and grotesque as it is scientifically true, that man is an
aggregate of amoeboid individuals in a higher unity, and that such
higher unities as may be reasonably likened to man, the Polyzoa
individuals and the Ascidians, have united again into yet higher
individual unities, and that, therefore, there is no impossibility in
science that in the future men should not coalesce into similar unified
aggregates. There can be no doubt that such phenomena as the now
almost forgotten Siamese twins and double-headed monstrosities are
tentative experiments on the part of Nature towards a 'colonial'
grouping."

73

74

By Seth Alter

@subalterngames

not_constantinople creates place-names from a blend of cultures, e.g.
"three parts English, two parts Catalan, one part Assyrian". In other
words, you can create names that don't sound like generic high
fantasy using it.

I created not_constantinople as part of a much larger worldbuilding
project; I wanted to populate a map with town names but I was
struggling to imagine them on my own (especially if I was less
familiar with the cultures in question). When I later found out that
sci fi writers were interested in it, I cleaned it up and released it for
free.

The challenge in creating it was finding a big enough corpus of place
names sorted by culture. I eventually converted Crusader Kings II's
data files into a (heavily modified) json file.

not_constantinople has a few more planned features, in particular: a
web app version, and a personal name generator
("not_constantine").

Download not_constantinople here:
https://github.com/subalterngames/Not_Constantinople

https://github.com/subalterngames/Not_Constantinople

By Guillaume Pelletier-Auger

https://pelletierauger.github.io/ | @pelletierAuger

75

“A presitation

of comic

books”

https://pelletierauger.github.io/

More: https://pelletierauger.github.io/Nos-Falaises-Presentation/

76

https://pelletierauger.github.io/Nos-Falaises-Presentation/

By Max Kreminski

https://mkremins.github.io | @maxkreminski

[Submitter’s Note: A few days ago I was digging through my lab’s
extensive board game collection and found a strange-looking gaming
magazine, apparently published by an organization called the “Tlön
Society for the Advancement of the Ludic Quasisciences”, sandwiched
between a couple of the boxes. Upon closer inspection, I found it to be
full of reviews of games that don’t actually seem to exist. I don’t yet
know quite what to make of this discovery, but several of the reviews
describe games that make use of procedural generation in very
interesting ways, so in lieu of a “real” submission, I’ve elected to
reproduce a few excerpts from the magazine’s numbered “Best of
2018” list here.]

34. YAWP (Fern Buckley)

Much like veteran designer Fern Buckley’s previous three games,
YAWP is a grueling QWIPlike that starts out tough and only gets
tougher as you gradually come to terms with the true nature of the
challenge.

To begin with, you’ve got the usual awkward mapping of keyboard
buttons to individual muscles; this time it’s the muscles that control a
human vocal tract. Your first utterances will horrify the ear, and
even once you start to get the hang of the controls, the real challenge
still awaits: the NPCs around you, whose own utterances are easily
mistaken for gibberish at first, are actually speaking an entire
procedurally generated language that you have to learn to speak
yourself (through the same awkward button-mashing interface) in
order to progress. Seriously, this game’s subtitle should be
“Developmental Linguistics Simulator”.

As a concept, YAWP is brilliant. As a game… well, I ragequit about 3
hours in. Consider yourself warned.

 77

https://mkremins.github.io

17. Gutter (Fake Palindromes)

Gutter is a game about truth. Something terrible (no one’s quite sure
what) befell the world about 700 years ago. Civilization bounced back
well enough, but the paucity of surviving documents from Back Then
has left you, the historian-protagonist, facing down a mystery of
literally apocalyptic proportions with basically no real evidence to go
on. One day, some enterprising archaeologist discovers a huge cache
of well-preserved newspaper comic strips from the years
immediately preceding the Event. Now, the race is on to pick through
the strips and piece together a coherent explanation of What The
Heck Happened. If the public finds your story convincing, you might
just be able to establish yourself as a historical authority and save
your faltering academic career.

Gutter is massively replayable. The world’s history, including both
the exact nature of the disaster and the comic strips themselves, is
procedurally generated on a per-playthrough basis. Different
cartoonists have different styles and senses of humor; they might be
aggressively political or focused on the everyday, relatively impartial
or horrendously prone to bias. As you struggle to deduce what real
historical events the strips might be referring to, you have to take all
of this into account.

At times, sifting through the myriad layers of indirect reference to
scrape together some scrambled impression of the truth feels like
trying to reconstruct the events that set off the latest discourse on
Squawkbox (or whatever social burrow you prefer) from vague
subsquawks alone. It can make for some frustrating gameplay – but
the moment of triumph when you finally assemble a story that fits,
one that can withstand the scrutiny of your colleagues and resonate
with the public imagination, makes all the struggle feel worthwhile.

78

6. Ruin Value (Softwary)

The premise of Ruin Value is deceptively simple. As the personally
appointed Chief Architect of a tyrannical and image-obsessed
dictator, you’ve been tasked with securing the legacy of the present
regime. You are to oversee the construction of great wonders,
majestic structures capable of outlasting even the death of your
entire civilization by hundreds or thousands of years. To assist you
in this task, the resources of an entire procedurally generated
empire have been placed at your disposal.

As you build, your employer watches closely over your shoulder,
frequently touring construction sites in person and offering his
feedback on your progress. These visits are a constant source of
stress, compounded by the unreliability of your supply chain
(resource shipments are often delayed due to constant fighting on
the empire’s fringes) and the difficulty of managing a veritable army
of laborers (many of whom are not offering their services
voluntarily, and will take any opportunity to stir up trouble).

Nevertheless, you make progress. Until one day the empire falls, and
you’re suddenly booted out of the game for six whole real-world
months.

When (if) you return, the camera has shifted to first-person, and the
intricate management interface is gone. All that’s left for you to do is
walk around the remains of what you built – weathered and worn by
millennia of simulated time – and reflect on the value of ruins.

79

80

By Paul McCann

@polm23 | https://dampfkraft.com

These are character sheets for the game "Into the Odd", a tabletop
RPG set in a weird 19th century. The vast majority of the photos
come from the Internet Archive Books Project Flickr account, and the
images were composited with ImageMagick.

https://dampfkraft.com

81

82

By Genetic Moo

@THISISDINOSAUR | @thetinySAURS

You may remember my project THE DINOSAUR GENERATOR from
2017’s issue of Seeds. It’s a big project, and has kept me busy for a
couple of years, and will probably keep me busy for many more. I
like where it’s going, and don’t want to rush it or make compromises,
but sometimes you just need to get something finished.

With that in mind, I chose a project for 2017’s Proc Jam that was, in
many ways, very similar, but also entirely different. The end goal is
still to generate dinosaurs, but that’s all it does. You ask it to give you
a tiny dinosaur (aka a tinySAUR), and it gives you a picture of a tiny
dinosaur; you can’t direct anything about it (e.g. what colour should
it be, how aggressive should it look), and you don’t know anything
about the final result (e.g. where it lived, what it ate, how it moved).
Expedience was the main motivation behind every decision, that is,
what would allow me to produce pictures of tiny dinosaurs as
quickly and easily as possible?

The generator is split up in to 8 sub generators, for different types of
dinosaurs:

Ceratopsians
Pachycephalosaurs
Ankylosaurs
Stegosaurs
Iguanodons
Sauropods

Large Theropods
Small Theropods

Each one uses the same basic approach, with generation split into
two phases: the first step produces a colour-coded geometry
template, and the second colours it. For the geometry step, each sub
generator has a photoshop file, with layers sorted into groups for
each part of the anatomy (e.g. a group of tail options), which the
generator then may pick zero or one of the layers in that group (e.g.
a tail is compulsory, a horn isn’t). Some groups are also given a range
of possible spatial offsets (e.g. some horns can be lower down and a
position will be randomly selected). This structure is also leveraged
to do different kinds of modifications, such as instead of selecting
one from a number of body options, there may be a number of
layers that can be added to modify the appearance of a the base
body. There are also some conditional rules, such as if the top
ceratops horn is too low or too big, it's not allowed to have a lower
one. The photoshop files are colour coded, with separate colours for
main bodies, horns, spines, eyes, feathers, and a number of colours
specific only to the theropod generators, so that feathers can be
removed, lengthened, and coloured with different patterns, allowing
the generator to use the same files for both more retro scaley
theropods, and theropods that are practically birds, like
archaeopteryx.

83

The output of the geometry step is also colour-coded in the same way,
although it may have decided to remove horns or spines, or decided
that certain categories of feathers should actually be part of the body,
amongst other things. The colourer then decides how to colour each
template colour (e.g. what the body colour should be, if each
different feather template colour should be the same, or totally
different, or if there should be a gradation). The colourer uses many
different colour palettes, with different chances of selecting from
each (and some chance of having any colour combination). For
example, one might be more likely to make the dinosaurs have nice
earth tones, and another might make them look more like tropical
birds.

84

Depending on the sub-generator, many other techniques are used to
add variation, such as with the sauropod generator, where any
sauropod has a 50% chance of having some sort of back frill; this is
then further modified by deleting a random amount of frill from the
back to the middle of the sauropod. There is also a chance of
removing the head portion of the frill (as long as the resulting frill
would still be reasonably large). These rules were specifically
selected to best match the sauropod references I could find. In this
way, I could have the option of any sauropod having a frill without
having to duplicate every possible neck, body, and tail option, and
instead adding the frill to every possible one, and deleting it
programmatically if it's not required. Similar techniques are used for
the texturing, where masks for under-shadow or stripes are applied
to the whole template, then parts are deleted selectively. There are
simply too many special case rules like these for each sub generator
to list them all in detail, from things like the variety of iguanodon
head texturing rules, to the ceraptops head patterns.

If you want to see the results for yourself, you can follow the twitter
bot @thetinySAURS, or there’s a server that lets you generate them
yourself: https://the-tinysaur-generator.herokuapp.com

85

http://twitter.com/thetinysaurs
https://the-tinysaur-generator.herokuapp.com

86

By Adam Riddle

https://realtimeriddle.itch.io/story-generator | @RealtimeRiddle

Everyone gather around to hear the story of Little Red Riding Hood:

[Granny called Red, and asked her to bring some food.
Red goes to the woods.
Red makes it to Granny's.
Red leaves Granny's and goes to the woods.
Red returned home.
The End]

Wow, that was boring. Let us try again:

[Granny called Red, and asked her to bring some food.
Red goes to the woods.
Red makes it to Granny's.
Red leaves Granny's and goes to the woods.
Red runs into the wolf and introduces herself.
Red hits the wolf.
Red tells the wolf about Granny.
The Wolf eats Red.
The Wolf gets to Granny's.
The End]

https://realtimeriddle.itch.io/story-generator

Well that was darker than expected but that is the great thing about
getting a story generated by a computer. You never know what you
are going to get. These particular stories were generated by an
algorithm that chooses the order of events to a story, and even
though the text is the same for any particular event, the results can
be very entertaining.

The Algorithm
This story generator focuses on changes in a story world caused by
possible story events. The generation has two important components
that consist of the story world and story events. The story events
have two important components called preconditions and effects.
Preconditions are needed in the story world to use the event, and
effects are what changes in the story world after the event is used.
The story world is a collection of variables and values that make up
the current state of the story.

The algorithm itself is simple. First, to initialize the generation, an
initial story event is chosen. The initial story world is set to match
the event’s preconditions.

Next, the generation starts with the story world being changed by the
chosen event’s effects, overwriting existing variables if necessary.
Then, a list of potential events is chosen by checking every event’s
preconditions against the story world. An event is rejected if there is
a variable in an event’s preconditions that is not contained in, or
whose value does not match, the story world. Otherwise the event is
added into a list. Once a list of potential events is compiled, an event
from the list is chosen at random. This process is repeated until an
“theEnd” variable in the story world is set to “true” by an event’s
effects.

Problems
In the brainstorming stage this generator was more complex. At first
there were three levels of generation planned. This algorithm would

87

“This story

generator

focuses on

changes in a

story world

caused by

possible story

events.”

have been be the same process explained above with each layer,
though events used for a different purpose depending on the layer.
Once an event was chosen for a layer, another one would not be
chosen until the layer below was complete.

The first, and highest, layer had events that controlled the overall
direction of the story. The event’s effects on this layer would have set
a goal for the story world that would be reached with the next layer
of generation.

The second layer would generate how the story progressed from one
story event chosen by the first layer to another. The effects of this
layer would act as a goal for the next, identical to how the first layer
chose the goal for the second layer.

The final layer would have been used to put together tags for a
grammar, an abstract structured language, to generate text. This
layers effects would actually have changed the story world.

The purpose for constructing the algorithm in this manner would
have been to create novel stories that would surprise the author of
the generator. The three layers of generation would have abstracted
the process enough to create an unpredictable, but enjoyable, story.

However, such a complicated algorithm proved to be unnecessary as
this goal ended up being largely accomplished with the simpler
algorithm that I did implement without magnifying the numerous
problems of the generator, such as authoring.

The authoring process can be both tedious and challenging as the
author must manually ensure each event’s preconditions and effects
maintain the desired logic of the story. In essence, for each story
event, every possible variable in the story world needs to be
considered. This calls attention to how complicated the authoring of a
story through events can become. In a way, that is intentional as

88

the complexity enables the generation of unexpected stories;
however, this structure also makes crafting a desired possibility
space of potential stories by hand nearly impossible. Just looking at a
graph of a small story makes this evident.

The Future
To fix the flaws with the current iteration, better data structures
need to be considered. At the highest level of generation, a finite
state machine could be used to determine the overarching flow of
the story. A planning algorithm should also be implemented to have
an easier way of computationally generating and testing the network
of possible events. The planning algorithm will also help remove
needless repetition during generation and enable the use of multiple
agents working simultaneously.

The next iteration will move from Python to Unity. This change will
focus on easily authoring new stories using graphical user interfaces,
enabling text generation after the events of a story have been
decided, and procedurally generating interactivity to immerse
readers into the generated story. My hope is that the next iteration
with be able to generate consistently enjoyable stories with
unforeseen outcomes.

89

90

By Scott Turner

Generating terrain is a very common procedural generation exercise
– many people tackle this as a first step to learning procedural
generation, and many games use procedural generation for some or
all of their terrain. Most terrain generation approaches you’ll find on
the Internet use Perlin or Simplex noise. With careful selection of
parameters, you can use noise to generate realistic-looking
mountains and interesting land shapes.

One problem with using noise in this way is that there is little control
over the end result. If you are generating the terrain for some
specific purpose, it’s hard to guarantee that the terrain will suit your
purpose. For example, if you need terrain with many small islands,
it’s difficult to be certain that noise will generate that. This might be
the time that noise generates rolling hills and deep valleys instead.

For the past few years, I’ve been working on a fantasy map
generator called. DRAGONS ABOUND uses noise for terrain generation,
but it also has a number of methods to procedurally generate
various terrains that are more intentional. This enables DRAGONS
ABOUND to create interesting maps by combining terrains in specific
ways. In this article I’ll talk about how DRAGONS ABOUND generates an
archipelago of small islands, but you can read about a number of
other methods on the DRAGONS ABOUND blog.

Some islands — like the Hawaiian islands — are formed by
volcanoes rising from isolated spots on the sea floor. Other islands
— like the Caribbean islands — are formed by the same sort of plate
tectonics that create mountain ranges. It's just that the action
happens where the ocean is deep enough to cover up most of the
mountains. Only the tops of the “mountain range" rise out of the sea,
forming a chain of islands along the edge of the tectonic plate. This
suggests creating an island chain by using the same process used to
create mountain ranges but putting them in an ocean area and
sinking them so that only the tops are visible.

While this would work to create free-standing ocean islands like the
Caribbean islands, in this article I'm going to use this technique to
create island chains that extend off the end of a peninsula, like the
Florida Keys:

https://heredragonsabound.blogspot.com
http://oceanservice.noaa.gov/facts/hawaii.html
http://www.livescience.com/22566-caribbean-arc-tectonics.html
https://heredragonsabound.blogspot.com/2016/10/its-not-my-fault.html
https://heredragonsabound.blogspot.com/2016/10/its-not-my-fault.html

Or the South Shetland Islands off the coast of Antarctica:

The first step is to create the proper shape of islands — a kind of
wedge-shaped area of islands stretching out from a peninsula. So if I
have a bit of map that has a little peninsula like this:

91

I want to add some islands in roughly this area:

92

If the islands start dense and wide near the shore and get narrower
and lower as they stretch out to see, it will hopefully appear as if the
same ridge that created the peninsula continues out to sea, sinking
lower and becoming islands. So I can use the triangle shape as a
mask and generate islands within that triangle. To test this out, I'll
try filling the mask with a solid chunk of land. (I'm placing this off
the edge of a simple circular land shape to get a notion of how it
would sit in relation to a peninsula.)

That looks pretty good. Now I need to turn that flat land into a
scatter of islands. How can I do that? Well, as the title of this article
suggests, islands are just mountains up to their necks in the ocean.

To start with, I will generate mountains in the mask rather than just
flat land:

93

https://heredragonsabound.blogspot.com/2016/10/mountains.html

Here I've simply filled the triangle with terrain generated using
Perlin noise. I used noise parameters that will give me a lot of small
pointy mountains — three octaves of ridged multi-fractal noise. I
chose this because I want to get a lot of small islands, but you can
play around with different noise formulae to find a setting that you
like.

Now I need to sink the mountains into the ocean so that only the tops
are showing. With a little playing around with heights, I got this:

94

This already looks pretty good. I control how far to sink the
mountains by setting a percentage of area within the mask that
should be islands, and then I lower all the mountains until only that
percentage is above water. (I'm showing more islands in these
images than I think looks best on a map because I want the shape of
the chain to be evident. In practice, I find about 25% land looks
good.)

Learn more about generating islands in Part 2, on page 121!

95

96

By Christiaan Moleman

@ninjadodo | http://www.ninjadodo.net/guppy/

I was working on an early prototype for my watercolor fish
simulation, Guppy, when I started to get really bored with playing
the same tiny test level with the same obstacles and hiding places
again and again. I could have made a new level, or several, but it
seemed this would only postpone the inevitable and I would soon
grow tired of those levels as well…

Instead, I chose to randomize the location and number of lily pads
and rocks in a level, effectively making the levels, such as they were,
random. A primitive form of procedural generation to be sure, but it
made the game fresh again and I could happily resume testing
mechanics without the tedious feeling of rote memorization.

http://www.ninjadodo.net/guppy/

I gradually expanded on the generation: randomizing angle and
scale (within a range), mirroring objects, creating multiple versions
of art for smaller parts and randomly selecting between them for
extra variety, rock formations that expanded into different shapes
and directions, and level gen templates that specified particular
combinations of rock and lily density and number of fish, etc.

I tied the complexity of generation to player progression so that early
on (when you have a low hi-score) the levels are very simple so as
not to overwhelm the player, but as you progress (with hi-scores of
5+ and 10+) the levels become larger and more varied. All this kept
development and playtesting interesting and meant I was able to
persist over the course of many evenings and weekends of spare
time and ultimately ship my game.

97

Keeping motivation over the course of a longer project is hard
enough as it is. Adding some dynamic variety can really help keep
development enjoyable, making your game more replayable both for
you and for players.

98

By Jo Mazeika

@jomazeika

One of the Hot New Trends (trademark) on Twitch are game
randomizers. Randomizers take a game, and shuffle around
different parts of it, from the locations of items, to enemy stats and
abilities, all the way up to generating entire new dungeons or
overworlds. By doing so, they grant players the opportunity to
explore a once-familiar space with new eyes. While they don’t tend
to alter the mechanics of a game (excepting some player
conveniences or bug fixes), they instead offer a player the chance to
explore a game in a new and unique way, recapturing some of the
experience of being able to explore a world again for the first time.
Many of these randomizers come out of speedrunning communities,
and as such, most allow the players to specify the random seed used
so that if players are racing to beat the newly randomized game,
they’re both on equal footing.

What makes the generation aspect interesting are the constraints
that the pre-existing game imply for the randomizer. It’s not enough
randomly shuffle things; the game still needs to be beatable, and in
most games, there are a number of configurations that will wind up
unbeatable. To overcome this, constraints need to be placed on the
system, leading to a complicated series of logic constraining different
items and locations on the positions of others. Depending on the
game, this can be a huge nightmare — the most popular randomizer,
the Link to the Past randomizer (https://alttpr.com/), has around 30
different items that can be used to open up new locations within the
game and all of these need to be accounted for when generating a
new seed for players to explore. Other game randomizers, such as
the Dragon Warrior randomizer
(https://github.com/mcgrew/dwrandomizer) and the randomizer for
the original Zelda (https://sites.google.com/site/zeldarandomizer/)
also generate their worlds as well as shuffling the items — the Zelda
1 randomizer shuffles the caves on the overworld, and has the ability
to generate dungeons from scratch, while the Dragon Warrior

99

“Randomizers

take a game,

and shuffle

around

different parts

of it, from the

locations of

items, to

enemy stats

and abilities,

all the way up

to generating

entire new

dungeons or

overworlds.”

https://alttpr.com/
https://github.com/mcgrew/dwrandomizer
https://sites.google.com/site/zeldarandomizer/

randomizer completely generates a new overworld, while leaving all
of the dungeons and caves alone. In all of these cases, it’s important
that all of the important locations are reachable, and….

These systems represent an alternate approach to game generation
— instead of trying to build a game generator from scratch,
randomizers start from an existing game and explode its possibilities
outwards, to the point where the generated experiences can be
completely unlike the original’s play. The Link to the Past randomizer
has modes where finding certain items requires the use of glitches of
varying degrees, allowing highly skilled players to test their skills.
The Final Fantasy 4 Free Enterprise randomizer (http://ff4fe.com/)
turns the linear, narrative-driven game into an open-world treasure
hunt by giving players access to two of the playable characters and
an airship, and letting them explore the world from there. The Final
Fantasy 1 randomizer (http://finalfantasyrandomizer.com) not only
gives players fine-tuned control over the gold and experience scaling
within the game, but features overworld changes, designed by the
community to make certain items more valuable as well as the ability
to shuffle around all of the towns, dungeon floors and caves to make
completely new spaces to explore. While most of these systems stay
close to their original play experiences, each new feature allows for
an even broader range of possibilities for these systems.

In short, game randomizers are a fascinating example of PCG out in
the wild, generating new scenarios and new spaces for existing
games. They offer a way of exploring the possibility space of a given
game’s world and mechanics, and they’re a great way to
re-experience a beloved classic in a new light.

100

http://ff4fe.com/
http://finalfantasyrandomizer.com

By Matt Schell

@mattmirrorfish | http://www.mirrorfishmedia.com

In this piece I'd like to give some context on my thought process in
creating Strata, my 2D level generation asset for Unity.

I was first exposed to the concept of procedural generation through
the action-roguelike wave of games spawned by Derek Yu's Spelunky.
I am a big fan of Jorge Luis Borges and his fantasies about infinite
libraries, and procedural games struck me as an incredible way to
play with the concepts of infinity that he imagined. Being new to
game development (this was about 4 years ago), I immediately
plunged into creating a 3D, flying procedural action game called
Monarch Black. I had no idea what I was getting into and it's still not
done. ¯_(ツ)_/¯

This summer I wanted a focused, finishable small project that I could
actually ship that wasn't the albatross that Monarch Black has
become in my mind. Hello side project!

101

http://www.mirrorfishmedia.com

My goals were that I wanted it to work with Unity's Tilemap tools, to
be reasonably user friendly to non-programmers and to be able to
create varied output without having to re-write the C# source code
itself.

The use of Unity’s Tilemap was inspired by reading about how Yu
designed maps in Spelunky, with hand written blocks of ASCII
characters representing level pieces that are then shuffled to create
random levels.The mix of hand-made and procedural content is a
nice way to address the often alluded to ‘Thousand Bowls of Oatmeal’
problem in PCG. Dropping some nuts and berries of authored content
into the oatmeal can give it nice pops of flavor and texture!

Instead of using ASCII in Strata you can draw your level pieces using
Unity's Tilemap tools. My hope is that this makes it more artist and
level designer friendly. Under the hood Strata actually uses ASCII
characters to build the initial version of the grid, before they’re

102

turned into tiles to be displayed. Drawing tiles, then shuffling them
to generate ASCII, then redrawing tiles opened up some options. I
realized that since I have the tiles in this intermediate form, I could
post-process and mess with them before turning them back into
graphics. This led me to the current modular structure of Strata
where you arrange what I call Generators into a series of generation
operations on the same grid of data, overwriting and changing it as
each one runs. By creating these Generators as custom
ScriptableObject assets in Unity it becomes possible to choose,
sequence and mix Generators via drag and drop in the Unity
inspector.

This also allows people to choose between completely procedural
levels, hand-authored levels or something in between. This is based
on a software development pattern called Delegation. This means
that non-programmers are able to control the generation process in
an intuitive way. It also gives programmers who want to extend the
system a clean point to begin doing so.

103

The more I started to work with Strata the more I realized that as
much as it’s a level generation tool, it’s also a kind of drawing tool. I
went to a high school for dropouts called City As School (which was
amazing!) and I remember for our, very remedial, single required
math class we were allowed to do a computer class. The class had
very antiquated computer hardware and they had a ‘turtle draw’
style application which we were assigned to do things like ‘input
some commands to draw a square’. I remember figuring out that you
could put in high numbers, randomize the colors and because it was
so slow to draw you could generate long screen-saver-ish spirograph
effects. Super fun!

Playing with Strata using the ‘WanderTunneler’ Generator (basically
a random line/tunnel drawer) and the symmetry generators, I was
having tons of fun making weird temple spaceship drawings. At some
point I’d like to explore it more as a pure drawing tool, separate from
game design. I’ve included a few pictures.

Because of the modular setup I intend to add a bunch of more
sophisticated algorithms over time. I want to see what the initial
response and level of interest is, and to get feedback from the
community first, but I have a lot of ideas for other generation
techniques to add.

It's worth noting that Strata is a paid tool, available via Itch.io and the
Unity Asset Store.
If you’d like to learn more about Strata there is a page for it here!

Feel free to message me on Twitter via @mattmirrorfish or to email
me at matt@mirrorfishmedia.com if you want to chat!

104

http://twitter.com/mattmirrorfish

By Alexander Pech

https://rednax.itch.io/

I'm an embedded software engineer from 9 to 5, but in my spare
time I like to dabble with procedural geometry. Dissecting things into
the smallest possible components and making them work for me is
my jam, whether it's manipulating the registers of a CPU or finding
new ways to coerce vertices and polygons into useful game assets.

Off and on in my spare time I've been jumping into Unity and, using
the built-in Mesh class, just seeing what I could come up with. I
started with the basics of programmatically placing vertices and
triangles. Then I moved on to basic primitives like cubes, cylinders
and spheres. Using these methods as building blocks I gradually
progressed to more complex and organic shapes.

A particular area of focus for me has been trees. Trees lend
themselves easily to this kind of algorithm for a number of reasons.
The branching structure lends itself nicely to a recursive or iterative
algorithm, similar to a fractal. The topology of a branch is fairly
simple, really just a tapered cylinder. Also, all trees are unique but
follow similar patterns, making them ideal candidates for creation
via a set of rules plus randomness.

105

https://rednax.itch.io/

My basic procedural tree structure is a cylinder with some function
controlling the direction of growth and radial thickness. I initially
tried controlling branch direction via applying incremental rotations
around a random axis. This gave a nice spiralled or twisted look to
my branches but turned out to be quite difficult to control. My
current solution uses spline curves. This gives me the control to
generate a series of spline points however I want and then smoothly
‘grow’ the branch along the curve. I’ve also experimented with more
physical based models, like growing towards a light source and
applying gravity.

The radius function, even though it has less influence over the
general shape of the tree, tends to be more complex. I like taking into
account the angle of the current vertex as well to produce a bit of
irregularity. This is particularly useful around the base of the trunk,
where you don’t always want a perfect cylinder. So, here you end up
with what is essentially a two-variable function for your branch,
defining the radius at any particular point along the length and
radial direction.

If this is confusing, here is the picture I have in my head when the
geometry is being created. You start with a spline curve and at the
start of the curve you draw an arrow perpendicularly out from the
curve. The end of the arrow points to your first vertex. Then, you
start to move the arrow up the curve while also rotating it, forming a
spiral. The length of the arrow is controlled by our radius function.
As it spirals up you periodically place a vertex at the tip of the arrow
and connect to the surrounding ones. This is the basis for the current
version of my algorithm. (You may have noticed the topology of these
branches aren’t exactly the same as cylinders as they have a single
edge that spirals all the way along. Visually there is very little
difference, but it gives me greater control because I don’t need to
place vertices ring by ring.)

106

From here I hope to keep building upon my toolkit, gradually
producing more complex and interesting shapes and also making the
meshes produced efficient and scalable so I can generate whole
forests. This was really just an introduction into the methods I’ve
used, as a lot of technical challenges have presented themselves
along the way. Generating different levels of detail was a big one. At
one point I threw out everything and started again just so I could
have control over this aspect right from the start! But now I have a
friendly ‘polygon density’ slider that does all this for me.

This has been a fairly technical explanation, but more than anything
I’m inspired by the biological and evolutionary processes that
created this life in the first place, so I hope to continue incorporating
aspects of that into my models. Even though right now I’m just
creating some funky geometry, there is a future vision that this may
result in generating not just meshes, but functional environments
with ecosystems and an evolutionary history. This will hopefully be
just one piece of a vaster world-building engine.

For now, I hope my experiments find some value with others. You
can find some of my work at my itch.io page https://rednax.itch.io/
(including some random unrelated game jam projects). Hopefully
plenty more to come!

107

https://rednax.itch.io/

108

By Terry Trowbridge and Joseph Alexander Brown

@jb03hf | trowbridgeterry@gmail.com | jb03hf@gmail.com

Generative poetry and narrative programs have become mainstream
projects for all levels of programmers and even gamer culture.
Professional programmers design small scale poetry bots in their
spare time. Undergraduate Computer Science students are
frequently assigned little projects that test their skills with
combinatorics and dictionaries. The ability to code a generative
algorithm to mimic the vocabulary or style of a poet is a standard
way to put the “STEM” in a “Science Technology Engineering Arts
and Mathematics (STEAM)” curriculum. Literary criticism is quickly
catching up, with more journals of literary studies asking for more
generative poetry theory each year. Casual literary criticism in
newspapers and blogs have moved away from asking “Is it art?” to
more substantial reviews.

What is the next step for generative poetry? In a fast-paced world
with short attention span, how does generative poetry resist a swift
death as a fad, while also avoiding the slow stagnation of becoming
more of a cliché than a genre? What justifies generative poetry as
experimental instead of just reiterations of a standard toolkit? How
is a poetry generator moving beyond just a developer of optimized
literal strings of characters and into something of an art?

We propose that generative poetry needs to start working its way
into live poetry readings, beyond the framework of production of
poetry as an artifact and into the idea of poetry as performance. In
particular, we believe that poetry programmers need to take their
poems to the open mic sessions that bookend most community-based
poetry readings. This aim is as much of a tactical maneuver, for
recognition of the contribution they make to art in their local
community, as it is a living laboratory to test their mettle like any
human poet in the postmodern, intertextual, twenty first century.

It is time for hacker poets to find out if they can “hack it,” pun

“In a fast-paced

world with short

attention span,

how does

generative

poetry resist a

swift death as a

fad...”

mailto:trowbridgeterry@gmail.com
mailto:jb03hf@gmail.com

intended, in open mic poetry readings. Someone who codes
generative poetry algorithms is contributing to the literature of their
neighbourhood, city, and nation. They deserve some stage time
among the other poets. We also suggest that while some poetry is
cliché, all poets are eccentric and have a unique voice. All poets are
cybernetic, in the sense of Wiener’s definition of “the scientific study
of control and communication in the animal and the machine.” This
creates a new definition of the Cybernetic poet who not only uses the
tools but is able to present the expression.

Some read their poetry off of their smartphones. Other poets
incorporate sound effects like looping and distortion in their
readings. Others add images to their stagecraft that doesn’t appear
on the page or poetry blog. Some poets have artificial limbs, speak
through vocoders, or simply change the settings on the
microphone/amp setup on stage. All manner of performance poets
utilizes the live venue to create unique artistic experiences.

We assert that generative poetry is equally as cybernetic as the other
forms of poetry that happen on
stage, especially when computer generated poems are performed
through the voice, body, and presence of a human. We will not know
what that means for each AI poet, however, until they take the stage.
The Turing test is not enough to examine a poem and only looks at
the ideas development method, and not the importance of the
expression of the ideas on stage.

109

110

By Juliette Foucaut and Doug Binks

@juulcat | @dougbinks | https://www.enkisoftware.com

We use procedural generation to create a 3D environment for the
prototype of our game, Avoyd. Our main reason for employing the
technique is to keep the download size small. Avoyd's a voxel game
in zero gravity. This means that all surfaces can be traversed in any
direction: players can fly but also attach themselves to any surface
and hover. In addition volumes can be edited in-game. The game
prototype features a fair amount of destruction, so we mix materials
of varying hardnesses to show off these properties.

Inspired by concept art by Rebecca Michalak
(https://www.enkisoftware.com/devlogpost-20160527-1-Concept-art-b
y-Rebecca-Michalak), we went through many iterations and by trial
and error ended up with a structure made of clusters of boxes linked
by bridges. Using voxels simplifies much of the procedural
generation since operations such as adding and removing volumes
are fairly trivial to implement. Most of the variables such as box
dimensions and group sizes are randomly chosen within boundaries.
Here's how we progressed from a simple voxel cube to clusters of
greebled boxes made of a selection of materials:

https://www.enkisoftware.com
https://www.enkisoftware.com/devlogpost-20160527-1-Concept-art-by-Rebecca-Michalak
https://www.enkisoftware.com/devlogpost-20160527-1-Concept-art-by-Rebecca-Michalak

To get these towers, draw a white cube, add greeble to the whole
surface by adding a random number of flat metal rectangles smaller
than the side they’re added to, and hollowing them out by removing
a box 2 voxels smaller offset by 1 voxel to the center of the metal
rectangle.
Move one cube length along an axis, add a new cube and greeble it,
repeat.

To hollow out a cube, delete random smaller boxes inside.

111

Cubes become boxes (random dimensions along each axis). Some of
the surface greeble is not hollowed out: they look like metal plates.
Instead of stacking the boxes along an axis, they are placed randomly
side by side and linked by planks/bridges. From one side of each
bridge we create a navigable path by removing a box shape the width
and length of the plank bridge but taller. Some of the metal planks
are dead ends that lead to a metal "safe room" (metal is a harder
material to destroy) built using the same rules as the white boxes.

Randomly colour the boxes using neighbouring materials (materials
are identified by incremental numbers and colours). Each box is first
created full, then we overwrite the inside with smaller boxes made of
different materials/colours. Following that, each box is greebled and
hollowed.

112

Here we're only using one materials family (colours white and grey)
to take a closer look at grouping the boxes in clusters.

113

Grouping in clusters and multiple material families (colours)
combined

As before, but in a very large world. It looks a bit messy.

114

Trying to add structure and landmarks by lengthening some of the
boxes a lot.

Grouping into clusters again: each cluster has a dominant axis the
boxes are lengthened along, and a single material family. Each
material family has a dominant colour: white, ochre, red, green,
blue, and various strengths. The white family is used about twice as
often as the others, though this is only detectable in large worlds
made of many clusters.

115

During gameplay, players and drones firing damages the generated
world. This is damage caused by a drone battle in a red cluster.
Strong materials take less damage than weak ones. In the current
build, Avoyd 0.3, materials do not shield each other.

To get an idea of the result, you can download Avoyd from our
website
[https://www.enkisoftware.com/avoyd].
When playing the game, the procedurally generated boxes described
above are the default environment. The game also features a Voxel
Editor which can be used for generating the procedural boxes. A
small number of parameters can be tweaked. To familiarise yourself
with the editor, follow the tutorial in Avoyd's Voxel Editor's "Help >
Tutorial" to "Create a simple shape with 'Set'". To try out the
procedural generation, 'Set' the shape called "Procgen: Linked Boxes".
Use a large box size for better results although the scene will take
longer to generate.

116

https://www.enkisoftware.com/avoyd

By Keith Evans

@kaynSD

Unlike Infamous or Daggerfall which utilised procedurally generated
content (PGC) during development to build staggering amounts of
content that would later be refined by traditional designers, games
like Dwarf Fortress, RimWorld and Ultima Ratio Regum generate vast,
persistent spaces for exploration at player request, each world
generated from a single random seed at the start of a game.

A subset of these kinds of spaces are those that exist on an infinite
plane. Rather than limit themselves to a fixed area, games like
Minecraft potentially go on forever in every available explorable
direction. Traditionally built by layering many Perlin or Simplex
Noise algorithms of different scales atop each one another, the
generator will continually feed a player an infinite horizon by
observing the values returned from inputting a given pair of
cartesian coordinates to the noise functions, and interpreting the
returned values as new tiles (in Minecraft’s case blocks of tiles are
built at the same time and stored as chunks).

There are limitations to using noise like this; chief amongst them is it
can often appear nonsensical. Should a player take a bird’s-eye view
of the world they will see a scattered, abstract pattern with no clear
oceans, continents or identifiable features.

From a designer’s point of view it is also difficult to design a game’s
mechanics that operate on properties of a map that are wholly
random in nature. How often a specific feature of a landscape is
generated can be at the mercy of luck, making for interesting terrain
but can mean unpredictable gameplay length and pacing.

To address these issues, I have been working on an algorithm to
carve an infinite plane into discrete elements. Rather than refer to
multiple noise functions to develop individual tiles and chunks in
isolation, my generator creates fractal regions on request at runtime.

117

 These regions are collections of chunks connected together and
generated simultaneously; which know of each other during their
generation steps and can build content in relation to each other and
in the context of neighbouring regions.

These regions can be thought akin to Zones in an MMORPG such as
World of Warcraft or Final Fantasy XIV; they are bounded discrete
areas of a given size that know which other zones they are connected
to. By carving sections of the infinite space into discrete regions, the
problems inherent to infinite space are reduced but still allow for
endless exploration.

The initial pass of the algorithm defines the shape of the area,
generated in a variant of a Koch Snowflake. Starting with a large
blocked out square of chunks, from a random point on each of the
four edges, a smaller square of chunks is extruded outwards. This
repeats recursively down to a single chunk (figure 1).

Since these areas are extruded outwards from a given point, rather
than simply placed, the algorithm can account for already generated
chunks, and can be cancelled at any point along it’s extrusion,
generating areas that are wholly contiguous. This area becomes the
base region (figure 2).

118

Figure 1

In the second pass, the generator runs a flood fill sweep from just
outside the determined boundaries of this base region (and any of
it’s detected neighbour regions), to find any potential chunks that
have been orphaned by the process, i.e. those that are wholly
enveloped by the base region and its neighbours (Figure 1). These
orphaned chunks are added and this forms the region.

Once the physical dimensions of the region and it’s currently
generated neighbours of are determined, other steps can proceed.
These may include:

● Climate Assignment, which can be influenced by
neighbouring regions to prevent tropical desert zones
emerging next to stretches of arctic tundra.

● Constructing impassable mountains, coastlines and passes at
the perimeters to control travel between the region and
neighbours

● Smart placement of gameplay elements; settlements, rivers,
roadways and easily identifiable landmarks (“weenies”) can
be sensibly assigned to this discrete space, allowing the
region to have its own identity.

A region can be created at any point in the infinite plane, with the
knowledge that they will connect seamlessly to other parts of the
map once new adjacent regions have been generated. This allows for

119

Figure 2

the placement of fixed, future or mandatory content, allowing control
of the game’s pacing.

As with all PGC, there are trade-offs in algorithms selected. In this
case the order that the regions are generated in changes and
influences how regions will be generated in the future, influencing
their geography, climate and contents. This makes it impossible to
predict what properties any given hypothetical tile will have until the
region containing it starts generation, unlike with deterministic noise
functions which will always be able to identify what a tile’s content
will be simply by passing the algorithm a pair of X,Y coordinates

Despite this complication, this region focused method of generation
has potential, and could find a place in any number of games wishing
to boast infinitely explorable worlds whilst allowing for context
sensitive positioning of gameplay elements.

120

This is Part 2 of Scott’s island generation article! For Part 1, flip back
to page 90!

For a further refinement, I can perturb the shape of the mask with
noise to get something that is less regular. You can read in more
detail about using noise to perturb a basic shape on my blog, but the
basic idea is to move the edges of the shape based upon noise. The
noise for two points that are close to each other will be similar (that’s
what distinguishes noise from random numbers) so the edges will be
distorted (or perturbed) in a consistent way. To see what this looks
like, I’ll start with the basic triangular mask:

121

By Scott Turner

https://heredragonsabound.blogspot.com/2016/10/making-islands.html

 And here are some perturbed versions:

122

https://2.bp.blogspot.com/-cbEi1QqnUS0/WCEZHgfJpXI/AAAAAAAALYo/7riSPXfDBaUuCQtq-_m26wfevsm2MbAYQCLcB/s1600/Image21.png

I'm using fairly minor perturbations here. It's important that the
island chain point away from peninsula to be convincing, so I don't
want to use so much perturbation that I lose that basic arrow shape.
Here is an example of an island chain created with a perturbed
mask:

I'm using fairly minor perturbations here. It's important that the
island chain point away from peninsula to be convincing, so I don't
want to use so much perturbation that I lose that basic arrow shape.
Here is an example of an island chain created with a perturbed
mask:

123

Perturbing the mask has made the arrowhead shape less obvious and
the overall shape of the peninsula islands more natural and organic.

Now that I can create an island chain, the next step is to identify
candidate peninsulas on the map and figure out how to properly
align the mask with the peninsula. Sadly, the research field of
peninsula identification seems to be moribund, so I was forced to
invent my own algorithm.

A peninsula is a point on the coast line where the land bulges out into
the sea. To detect these spots, I slide 2 points (Beginning and End)
along the coast line, keeping them a fixed distance along the coast
apart. At each step, I check whether the midpoint of the line between
Beginning and End is over land. For example:

124

Here the green point is on the midline between Beginning and End
and is over land. So I know that the coast between Beginning and
End forms a peninsula. If there is water, I have a bay:

(In practice, it's better to check a number of points along the line
between B and E and make sure they're all land, because in some
situations where B and E are straddling a long narrow bay the
midpoint might be land with water to one side.)

Once a peninsula is detected, the next step is to determine where to
anchor an island chain and which direction it should point. This
starts by placing a new point on the Middle point of the coastline
between Beginning and End:

125

This point is the anchor for the island chain. To measure how
“pointy" the peninsula is, I create a line from the Middle point to the
line between Beginning and End:

The ratio of the length of this line (the blue arrow) to the length of the line
between Beginning and End is a measure of the peninsula's “pointiness".
Pointier peninsulas are better for anchoring island chains. I don't want to
put an island chain off every peninsula, so I scan the coastline, rank
candidate locations based upon their pointiness, and then use the top
candidates.

Here's an example island (generated with Perlin noise) with the top four
peninsulas highlighted:

126

You might note that the blue arrow isn't always perpendicular to the
red dotted line. This happens because “M" is at the midpoint of the
coast line between “B" and “E". Since the coastline is wiggly, the
midpoint is not always exactly in the “middle". In the example at the
lower right part of the map you can see how sliding the red dotted
line along the coast sometimes finds somewhat odd “peninsulas".
However, in general the algorithm works pretty well.

The best candidate on this map turns out to be the lower middle
peninsula, so that is where I'll add an island chain. To size the mask
for this chain, I'll make the base of the wedge the length of the dotted
red line, and I'll make the length of wedge about three times the
length of the blue line. On the following map I've filled in the mask
with solid land to illustrate it's size and shape:

127

Keeping the mask no wider than the peninsula helps it look like a
continuation of the peninsula. The length is more a matter of taste —
choose what looks good to you.

128

Before creating the island range, I perturb the mask to make the
regular shape less obvious:

And now I can generate the islands:

129

Here are a couple more examples:

That covers the basic process DRAGONS ABOUND uses to create small
archipelagos. As I hope the explanation makes clear, this process uses
noise (both to perturb the basic mask shape and to create the
mountains) but harnesses the noise within a procedural generation
algorithm that creates a specific kind of terrain. This enables DRAGONS
ABOUND to create novel maps that also suit a particular purpose. For
example, if I wanted to generate a map for a fantasy role-playing
campaign that started with the players being shipwrecked, I could
use the archipelago island generation to make a map which I could
be certain would have some suitable rocks for a shipwreck. The
combination of a structured procedural generation algorithm driven
by noise can be a powerful method in your developer’s toolkit.

130

At first I didn’t find cellular automata very interesting. As a simple
way to generate complex patterns, yes, they were neat, but the
black-and-white pixelated pyramids they tended to generate had a
samey quality that didn’t seem super artistically interesting to me. It
wasn’t until I saw Gwen Fisher’s “Pixel Paintings” that I changed my
mind. Gwen, a mathematician and visual artist, had incorporated
colors and imperfections into her use of multistate cellular
automata. The paintings hovered somewhere precariously between
abstract and representational art: you could see, or imagine, lava
flows, rivers, hanging gardens.

Immediately I thought this had musical implications, and I set about
mapping colors to everything I could think of: pitches, samples,
timbres, more esoteric parameters. The results were immediately
compelling, and fun to play with. For example, the initial conditions
(or seed) of an automaton can have a great impact on the
automaton’s evolution. Seeding a particular automaton with random
values causes it to evolve into other random-seeding patterns (Figure
1), while seeding it with a a row of a single value causes it to settle
into a periodic fluctuation of more rows containing only a single
value (Figure 2). Initializing it with the seed 1111211111112111
yields a more intricate and coherent pattern that displays many
symmetries and near-symmetries (Figure 3). This seed can be
thought of in musical terms as a backbeat, with accents on beats 2
and 4 of a 4/4 measure. In other words, seeding an automaton with a
musically cogent patterns can yield other musically cogent patterns.
Another interesting feature of this pattern is that it is a long-term
stable structure; after 41 rows (or measures), it repeats.

The patterns also respond satisfyingly to interventions, like putting
your hand underneath a faucet and watching it change the flow of
the water below. They also present an interesting challenge to the
listener/observer, who has to decide what information is most

131

By Isaac Schankler

@piesaac | http://isaacschankler.com

“The results

were

immediately

compelling,

and fun to play

with..”

http://isaacschankler.com

musically relevant. This perception can change depending on how
the automata are turned into sound, from noise to percussion to
melody and harmony. These shifting representations seem to
interrogate how we as listeners derive musical meaning from
patterns, and in larger sense, how we decide what information is
relevant to us. Often in looking for patterns we see something that’s
not there. It turns out there is a lovely word for this: apophenia. The
abbreviated form of this, Apop, became the piece’s title.

132

133

By Tilman Schmidt

@Keymaster_ | trowbridgeterry@gmail.com

mailto:trowbridgeterry@gmail.com

134

An experience that I — and maybe you, given the demographic of
this zine — have had often goes as follows. I have an idea for a
generator. “I’d like to make a planet generator”, or “Let’s make
something that generates islands”, for example. Then I spend way
too much time working out an algorithm to generate this thing I
want. Then, upon exploring my new creation, I realize I have no idea
what this generator is for besides being kind of neat.

Now, generators that are just kind of neat are fine! This isn’t a
manifesto against games/non-games where you just explore a space
created by an algorithm. Yet, I like to aspire to more. A good
generator becomes so much more appealing when paired with
mechanics that encourage the player to interact in ways that show
what’s most interesting about the space. This isn't just true of
procedural games: all games enjoy design decisions that force the
player to see what's cool about them. With that in mind, here are a
few mechanical ideas for encouraging players to explore your latest
generator:

#1: Photography

To explain this let’s talk about a game that isn’t procedurally
generated: Dead Rising. Dead Rising is a 2006 action-RPG about
zombies who overrun a mall. You play as photojournalist Frank
West, who has covered wars, you know. Frank’s occupation leads to
one of the game’s oft-overlooked mechanics: Frank can take pictures
with his camera, which awards the player with experience points
based on how well they fit certain criteria. The fact that nobody has,
to my knowledge, made a procedurally generated game based
around this concept baffles me. No Man’s Sky comes close, rewarding
you with money for scanning new plants and animals you discover,
but that’s far from the core of the experience. It also doesn’t
encourage the player to engage with the space in quite the

135

By Prophet Goddess

@prophet_goddess | https://prophetgoddess.itch.io

https://prophetgoddess.itch.io

same way as an actual photography mechanic. Photography
mechanics can give players guidance while still letting them set and
complete their own goals.

#2: Delivery

Let’s talk about another game that isn’t procedurally generated:
American Truck Simulator. For the unfamiliar, American Truck
Simulator is exactly what it says on the tin — a game where you play
as a truck driver making deliveries in America. It’s a sequel to the
also much-acclaimed Euro Truck Simulator 2, which is also exactly
what you think it is. The Truck Simulator games are a perfect
example of how very minimal structure can transform an
experience. In American Truck Simulator, you get loads to carry from
point A to point B, and that’s about it. The main draw of the games is
experiencing the lovely sights along the way. A procedural version of
this idea is fairly easy to imagine, but it doesn’t need to just be a game
about road trips. One could also imagine a game where you fly your
spaceship between planets making deliveries. Or you could be sailing
a boat between islands. Or walking on trails through the woods. The
beauty of this mechanic is its simplicity. It’s easy to implement to
work with your specific generator concept compared to the trickier
task of systemizing what constitutes a good photograph. Like
photography, though, it doesn’t bog the player down with systems to
draw their attention away from the real star of the show. It also
provides opportunities for procedural narrative and character.

#3: Archaeology

Have you played Caves of Qud? Again, given the demographic of this
zine, I’m willing to bet you're at least somewhat familiar with it.
There’s a lot to love about Caves of Qud, but one of the most
compelling aspects of it is its procedural archaeology. Qud is, in large
part, a game about exploring the ruins of ancient civilizations,

136

piecing together the past through the fragments left in the present. If
you’re committed to your experience being without such extrinsic
motivations as points and quests, archaeology provides some light
structure that allows maximal freedom for players to choose how to
engage with your game. It is, however, much more involved to
implement a consistent and compelling procedural history than it is
to implement photography or deliveries.

This is not a conclusive list of non-violent mechanics for encouraging
player exploration. I encourage you to think about these as starting
points. You can borrow them wholesale for your game, or you can
use them to spark inspiration for similar mechanics all your own.
What matters is taking advantage of the power of game design to
show what makes your generator special.

137

138

By Denis Kozlov

@kozzzlove | http://www.kozlove.net | http://www.vimeo.com/kozlove

My background is in commercial CGI — Mostly film VFX and
advertisement; gamedev, television and even a touch of DTP too. I’ve
been attracted to proceduralism for most of the career, using it
bit-by-bit in everyday work, and constantly pondering of bigger,
higher level systems. Finally I’ve taken the last four years to explore
the possibilities for such systems and would like to share some
results with you.

One aspect which I feel might be interesting to the community (and
one in which my approach seems different from many projects
presented here) is the choice of tools: Houdini as the main platform
and Fusion for supplementary 2/2.5D work. Both are high level and
high end node-based DCC packages. This gives me tons of freedom
and allows to convert existing knowledge and understanding of
computer graphics into the code most seamlessly. I’ve covered the
approach in more detail here
http://www.the-working-man.org/2017/04/procedural-content-creatio
n-faq-project.html — the same article also discusses my first
seriously big result — Project Aero.

http://www.kozlove.net
http://www.vimeo.com/kozlove
http://www.the-working-man.org/2017/04/procedural-content-creation-faq-project.html
http://www.the-working-man.org/2017/04/procedural-content-creation-faq-project.html

Project Aero is a procedural aircraft design toolkit — a CAD system I
developed in early 2015 as a proof of concept; an exercise in
applying procedural approach to a less typical task than a landscape
or city generator. The system allows a new, highly-detailed 3D model
to be created in a couple of hours from scratch; no data is sampled
from disk — every piece of geometry and textures are synthesized to
fit the particular design. All models come out pre-rigged and ready to
render, with parametric aging, non-identical symmetry, and unique
copies on a button.

Though it had started as a tech demo, Aero has proven to be
production-ready and served as the core technology behind Flight
Immunity — an aircraft concept art project currently counting over
50 original designs and otherwise hardly possible within the same
time frame.

139

While this first project has aimed to prove that such procedural
enterprise was at all possible, the second one was meant to show that
everything is. I’ve been intentionally seeking to make it as different
from Aero as possible — in subject, techniques and any other aspect.
Kozinarium is a creature generator; a true generator this time: a new
creature can be created in one click (though CAD functionality is still
there and every design parameter can be overridden manually).
Several seeds can completely define both the shapes and animation
for a new animal; a rig is generated procedurally too. Models are
created with volumetric representations, animation largely relies on
Finite Elements Model dynamics, and most of the shapes and motion
paths are literally drawn with mathematical functions. I’ve covered
Kozinarium as well as some more exciting stuff here
http://www.the-working-man.org/2018/04/procedural-bestiary-and-ne
xt-generation.html.

These, and other endeavors of the last years, have left me with two
outtakes which I’d like to share. One is that visual art is formalizable
and can be expressed algorithmically to a much higher degree than
it’s commonly considered. This is the message going throughout all

140

http://www.the-working-man.org/2018/04/procedural-bestiary-and-next-generation.html
http://www.the-working-man.org/2018/04/procedural-bestiary-and-next-generation.html

my procedural work. It takes a lot of knowledge, it takes a lot of
effort and devotion, it does take a vision, but it is formalizable. I
found that while designing procedural systems I think in altogether
different terms than ‘pixels’, ‘polygons’, or ‘UVs’. Translation into this
technical language of CGI happens quite late in the process, but is
already being done to some extent for each project. What’s needed is
to generalize it.

For example, the basic notions like point, curve and surface can all
be redefined at a higher abstraction levels, so that particular CG
implementations like NURBS or polygons, raster or vector should
become secondary and be derived from those. This in turn can form
a backbone for a much more content-aware design system, “the
generator of generators”. As a third and final project, I have actually
conceptualized a point-based solution for this new system — a
universal high level framework for procedural content creation. It’s
sitting there as a set of notes in the drawer waiting for the proper
funding.

141

The second outtake I’ve got from the journey looks a bit less
optimistic — I’m observing exciting procedural things happening
simultaneously across several different fields of knowledge, yet these
fields seem to show little interest towards each other, each living in
their own bubble. Film vs games, artists vs programmers, academia
vs practitioners — only a few camps that quickly come to mind, each
being involved with proceduralism in its own way but with a clear
lack of dialogue in between. Hope this text might become a part of
the change.

More words and pictures are available at www.kozlove.net

142

http://www.kozlove.net

