
Issue 4

Tanya X. Short
Shannon Kao
Neel Shivdasani
Justas Dabrila
Mikhail Maksimov
Alexander Zhuravlev
Jesse M. Porch
Hodge
Elle Sullivan
Joseph Alexander Brown
Hamna Aslam
Nikita Lozhnikov

Contributors:

Editors: Jupiter Hadley - @Jupiter_Hadley
 Dann Sullivan - @FBFDann

Isaac Karth
Max Kreminski
Serin Delaunay
Lee Tusman
Sean Butler
Gordey Chernyy
Maria Mishurenko
Lee Tusman
Terry Trowbridge
Neil Bickford
Kelson Smith
Brandon Campbell

Organisers:
Mike Cook, Jupiter Hadley,
Azalea Raad, Dann Sullivan

Discord Community
Managers: Hectate, KaynSD,
Stella Mazeika

`

Thanks to the Royal Academy of
Engineering for additional funding and
support

Cover Art by: Martin O'Leary

Some header/footer patterns from Martin
O'Leary’s daily drawings. You can find
and buy prints of them here:
https://twitter.com/mewo2sketches

https://twitter.com/mewo2sketches

The ProcJam is a unique, relaxed game jam that aims to make
procedural generation accessible and to show off projects that are
pushing the boundaries of generative software. As a whole, this jam
is laidback, easy to enter, and fun to be apart of. We are working to
build a community of friends and peers across disciplines all
interested in procedural generation.

The ProcJam takes place across nine days, including two weekends.
You can enter anything you’d like - art, video games, board games,
tools, anything you’d like to create as long as it has something to do
with procedural generation/random generation/generative software
etc. You could even take an existing project and add some generative
magic to it for the jam! If you start before the start of the jam or
enter your project after the end of the jam, that's fine as well.

This is truly a community effort, even down to this zine which was
made from submissions from the ProcJam community.

We hope you enjoy it!

Do’s and Don’ts of Procedural Flirting 01

The Divine, in Verse 04

How GASP Gallery enables generative artists 09

Unbounded Prefab Based Dungeon Generator for Tiled Game Worlds 11

Infinite Graveyard Generator 16

Procedural Real Scale Planets in Real-Time 19

Narrative Deckbuilding for Ambient Storytelling 25

The Divine, in Verse 28

Writing programming languages for procedural generation 34

Paper Terrain Generation 38

Modeling Possibility Spaces in Graph as a Tool for
Generating Detailed Worlds 41

Generators That Read 46

Incorrect Tracery 49

Throwing Things 54

Procedural characters for VR action game: 5 lessons learned 60

Paintmaster 5054 - Jazzfunk Greats 63

Report on the First #InnopolisAIArt Contest 65

Does Generative Poetry Need A Theory of Forgetting? 69

By Tanya X. Short

@tanyaxshort

BadCupid was briefly a livestream-only game created for Mixer
(perhaps someday to come to Twitch.tv) in which viewers could bet
virtual currency on the outcomes of “dates” held between randomly
chosen characters in a database. Characters would flirt with one
another using different ‘Moves’, such as Compliment or Kiss, with
accompanying text as dialogue or description of their action.

As a result of a Move and its success or failure, characters gain or
lose Love points. Players bet on whether or not the two characters
can reach maximum Love within a time limit.

When designing and scripting the
A.I. characters “fall in love” in
BadCupid, we intended to create a
spectacle that was fun to bet on,
like a sports match or horse race.
Thus, our design goals were to:
Make it funny, using subverted
familiarity, surprise, and some
absurdity.
Make it dramatic, with generally
perceived/clear progression and
outcomes, with over-the-top
writing and “swingy”-feeling
pacing, leading to somewhat
 predictable odds with occasional
 improbable, sudden upsets.

However, dating and love are fraught with tricky social cues and
political implications, so we knew procedural humor is a bit risky.
We wanted to create an experience that equally celebrated all forms
of adult, consensual dating, and feared making light of sexual
harassment or predation, which are real dangers in the modern

“However,

dating and love

are fraught

with tricky

social cues and

political

implications,

so we knew

procedural

humor is a bit

risky.”

1

dating world.

In order to reduce the chance of unpredictably offensive content, we
decided to use a “replacement grammar” for the dialogue, meaning it
was all created from an authored corpus. So if a line’s base grammar
was “%thinkPhrase %interest %positivePhrase”, for example, it could
be filled to become “I’m sure science is so great.”

OR “I think Street Fighter should be more popular.”, but all of those
variants (such as thinkPhrase becoming “I’m sure” or “I think”) would
need to be written by us.

 With all that in mind as context,
 here’s a few lessons learned from
 writing a replacement grammar for
 the flirting dialogue of BadCupid.

 Do’s
 Do be inclusive. It was tempting to
 limit ourselves to only ‘safe’, status
 quo depictions of romance, because
 we were afraid of depicting LGBTQ+
 dates, or different body types, or
 other cultures, seeming like a joke.
 But by including lots of different
 characters with different known
 romantic preferences, it welcomed
 more kinds of viewers and gave the
 algorithm a seemingly wider range of
 outcomes, because we naturally
interpret some flirts differently between different types of people.

Do plan out your pacing. Escalation is the key appeal (and danger) of
dating. To go from being strangers to falling in love is a pretty intense
escalation -- it can help to map out exactly what kinds of flirting

2

3

belong to which level of intimacy and extroversion one or both
flirters have achieved.
Do radically accommodate character personality traits. One of our
biggest mistakes was trying to make a single set of Moves support
most characters -- it made them all sound too similar, and react too
similarly to each other, when in reality, the fun and horror of dating
is that we’re all so different, even when given the same stimulus. One
person’s casual “Hello, beautiful” is unspeakable to another, and
might be the perfect line on some of us, and the worst line on others.
As soon as we started splitting up characters into at least “kind” and
“jerk” types, we started seeing much more interesting flirt scripts.
Do highlight when characters use or discover a shared, mutual
interest (or a new incompatibility). This kind of moment is the
building block of any romance (or heartbreak).

Don’t
Don’t overly depend on “compatibility”. In reality, humans are often
picky and have specific demands of our dating partners (gender
expression, age, location, behaviour, personality, etc), but flirting is
much more compelling when you know there’s a serious chance
they’ll fall in love, no matter how ill-suited to each other these 2
characters are.
Don’t forget that flirting is a two-way, collaborative activity, not just 1
person acting on another. Spend plenty of time thinking and
planning not just how characters can flirt, but also about the
different ways characters can react to being flirted with!
Don’t be afraid to go a little extreme, especially if your pacing plan
can support it. At first, we only explored Moves like “Kiss” or “Touch”
or “Insult”, but if you would like your procedural flirting to be funny,
why not go all the way with “Propose Marriage” or “Declare War”? It
certainly makes the dates memorable in a short period of time!

But maybe most of all, don’t hesitate to make a procedural flirting
engine! The world needs more interesting deconstructions of what is
romance and why we fall in love.

4

By Shannon Kao

https://www.shannonkao.com | @shannonkao

PROLOGUE

Friends at the Table is "an actual-play podcast* about critical
worldbuilding†, smart characterization‡, and fun interaction
between good friends", run by the inimitable @austin_walker.

* A podcast recording of a tabletop roleplaying campaign

† of which the fourth season--Twilight Mirage--is a mecha anime
story set in a far-future utopian fleet of city-ships

‡ each associated with a synthetic intelligence called a Divine.

http://www.shannonkao.com

Divines are massive mechs, and work in concert with a pilot, called
an Excerpt.

This is not critical to understanding the generative system that
follows, but Friends at the Table is a very good podcast. The
following _is_ critical:

Excerpts, as the name might imply, are named after a fragment of a
text, with one word annotated for abbreviated address. Examples
from the show include:

- _With The Fourth Promise Broken, The People Of The Clay City
Watched The Sunset For A Final Time_, known as ⸢Promise⸣
- _They marked scars of light in pitch; born in fiercest purpose, and
beheld as the signet sealed upon our pact_, known as ⸢Signet⸣
- _Mighty though the force of the tides be, the swimmer's will extends
further yet_, known as ⸢Will⸣

I'm a longtime fan of Friends at the Table and their superlative
naming systems, and was inspired by @longestsigh's Friends at the
Table NPC name generator* to make my own, specifically for these
excerpt-style names.

* https://twitter.com/longestsigh/status/1145098049833897986

5

https://twitter.com/longestsigh/status/1145098049833897986

PROCESS

My initial idea was to find a repository of interesting prose and parse
sentence fragments from it. I poked around Wikipedia's random
article APIs, thinking to pull from a category like "Music" or "Poetry",
scrape the text, and parse it into something resembling an excerpt
name. Ten minutes of searching didn't reveal an easy
random-article-in-category API, but DID inspire me to see if there
were pre-existing databases of poetry I could query, wherein I
immediately discovered PoetryDB.org.

This incredibly convenient and fairly extensive API allows you to
query poems using author, line count, title, or the content of a line
itself. A request for all lines of Emily Dickinson's poetry returns:

My first cobbled-together attempt randomly picked either Dickinson,
Shakespeare, or Tennyson, concatenated two lines from the corpus of

6

that author's work, and grabbed a random chunk of words from the
middle of that string. Keeping both lines from the same author, I
figured, would ensure some continuity of style and theme. I then
"modernized" the string with a quick search-and-replace of things
like "thou" with "you", and picked a random "interesting" word from
the name to use as the shorthand character "nickname".
(Interesting-ness here determined by an extensive blacklist of boring
words. Like prepositions.)

There are some fiddly issues with punctuation, specifically the join
between the two lines, but this first draft worked _astonishingly_
better than I had anticipated. To be honest, it feels like cheating to
take any credit when writers of this caliber did most of the
composing, but I was completely delighted by how interesting and
coherent the initial results were.

I did some additional work to polish up the string
parsing--randomized punctuation between the lines, playing with
capitalization for either the first word or all words in the name, and
stripping punctuation from the selected nickname. Eventually, after
endless updates to the boring-word-blacklist, I limited the nickname
to words longer than three characters. I also ended up adding the

7

Brontes and Keats to the list of poets for variety.

PAYOFF

I'm not sure what the moral of this story is but this was a fun
afternoon of coding, and I still occasionally pop back to the generator
to flip through results. As with all generative art, each result feels
unique and transient, and I have an entire folder of screenshots
attesting to the fleeting sensation of having bottled sunlight, when a
particularly good name pops up.

Maybe the moral is, listen to Friends at the Table! It will make your
life better in surprising and unexpected ways. Or maybe it's that the
intersection of disparate influences creates deeply interesting art. Or
maybe it's, hey, go read some Emily Dickinson.

Code: https://github.com/shannonkao/excerpt
Demo: http://excerpt.surge.sh/

8

https://github.com/shannonkao/excerpt
http://excerpt.surge.sh/

By Neel Shivdasani

http://gasp.gallery/

A lot of generative artists seem to suffer from a sort of identity crisis.
I can’t even count the number of times that I’ve heard a generative
artist say that they’re “not an artist,” or that they’re just a coder. The
fact of the matter is that generative artists can make incredible
images that viewers wouldn’t distinguish from other types of art.

I think this disconnect has two causes. First, artists are often their
own worst critics, and it’s easy for generative artists who don’t feel
like their work has value to just dismiss it as code instead of art. The
second reason is that it can be difficult to turn generative art into the
sort of high quality physical output that people often associate with
fine art.

That’s why we created GASP Gallery. It’s a platform that enables
generative artists to sell high quality unique prints of their work to
customers through an engaging and fun customization process.
Buyers come to our website, select a style that they like from one

9

http://gasp.gallery/

of our artists, and then get a totally unique version of that style
generated for them on the fly. The buyer then has the opportunity to
customize the color, texture, and other characteristics of the art. They
can also generate new versions, share the results with friends and
family, or save them to finish later. Once they’ve customized the art
to their liking, they can order a high quality print that gets shipped
directly to their home.

Our hope is that we provide a service that is beneficial to both art
buyers and to generative artists. Buyers can easily and cheaply buy
unique art that is suited to their liking, and generative artists can
reach a new audience without having to take on the overhead of
printing, marketing, etc.

If this sounds like something that would make sense for you as an
artist or buyer, please come check us out at http://gasp.gallery.

10

http://gasp.gallery

11

By Justas Dabrila

https://ssstormy.github.io/ | @justas_dabrila

Writing a generator that allows artists and level designers to easily
tweak it is hard. I came across a viable solution while digging around
Starbound that is not constrained by a generator-wide grid size and
requires no custom tooling (sans the generator itself):

https://ssstormy.github.io/
http://www.shannonkao.com

Have a pool of "prefab" dungeon parts that we know how to "place"
into the world, then somehow "stich" an arbitrary amount of those
parts together. This strategy consists of two algorithms:

The first is the stiching: how we chose which prefab to place and
where to place it. Suppose we want to create a dungeon that is a
linear corridor from start to finish. In order, to connect a prefab to
another prefab, each prefab will need to have one or more doors
(we'll get to defining doors in a moment).

The stich algorithm for this dungeon is best communicated in
psuedo-code:

(1)
```
    place_room :: (position : Position, room : Room);
    pick_next_room :: (pool : RoomPool) -> Room;
    find_suitable_door:: (in_room : Room, for_room : Room) -> boolean, 
Position;

    dfs_to_finish :: (room : Room, remaining_recursions : int) -> 
boolean {
        while(true) {

            pool : RoomPool;

            if(remaining_recursions == 0) {
                pool := finish_pool;
            }
            else {
                pool := room_pool;
            }

            next_room := pick_next_room(pool);

12



            // we iterated over all the rooms!
            if(!next_room) {
                break;
            }

            did_find_door, door_position := find_suitable_door(room, 
next_room);

            // couldn't find a suitable door, try another room.
            if(!did_find_door) {
       
         continue;
            }

            place_room(door_position, next_room);

            if(remaining_recursions == 0) {
                return true;
            }

            return dfs_to_finish(next_room, remaining_recursions - 1);
        }

        return false;
    }

    room := place_room(starting_position, starting_room_pool);
    dfs_to_finish(room, 4);

```

This algorithm will place a spawn room, create 4 rooms and one final
room that are each connected by doorways.

13

A subtle but very important detail is that find_suitable_door_in will
find a random door in room at door_position and check if the
next_room can be spawned there: is there enough space in the world
and is any of that space obstructed?

In the case that we want to guarantee that a dungeon has a finish and
we've failed to place the finish prefab, we can simply pick a new seed
and retry the generation process.

We can tweak this algorithm to create slighly different dungeons that
use the same prefabs in two ways: first, we randomly can mirror the
room prefabs in the X and, if the art & level design allows for it, the Y
axis. Second, we can reuse rooms by using a different stiching
algorithm to place them at the locations of the doors we did not use
(previous room didn't connect to it && next room doesn't connect to
it) to create side-paths, treasure rooms, secrets etc.

An exciting part of this is that we can create a hierarchy of stiching
algorithms. A room prefab could be make abstract into a stiching
algorithm that generates a room. We could use this to replace our
finish room with a stiching algorithm that generates some sort of
interesting challenge room out of it's own pool of room fragments,
which, if we are crazy enough, are too generated by a stiching
algorithm.

The second algorithm is the one that will place a prefab into the
world. A block of text could be used, mapping certain letters to game
things. This method can be cumbersome as you can only manipulate
the text in the limited ways your text editor allows us to.

The a viable strategy seems to be storing the prefab as bitmap image
which allows us to use any image editing software we like. During
placement we can map pixel colors to game things: color (255 0 0 255)
represents a solid, and color (128 128 0 255) represents a foe as

14

 illustrated in Fig 1.

In order to represent a "door" within our prefab, we could treat
certain colors as "logical" tiles that don't map to any game thing.
Instead they provide information to our stiching algorithm. Knowing
that, in order to create a directed doorway for a prefab, we could
treat the color (0 0 255 255) as a door tile and color (255 0 255 255) as
a direction tile. Our prefab will now look like Fig 2. This is sufficient
door information for (1).

15

16

By Mikhail Maksimov

https://dyingfun.wordpress.com/

This is app that generates an infinite Graveyard.

https://dyingfun.wordpress.com/

17

18

“Why not

create

something that

we could only

dream about

just a few

decades ago?

19

By Alexander Zhuravlev

@alexander_tsuru

I’ve always been dreaming of creating a whole world of my own, a
world where I can change or create something. And no limits at all:
just your imagination and your creativity. Isn’t it great to have a
simulation you are able to adjust and customize any time you want?

Well, I still remember the game called Elite 1984. It was a great
concept: you could fly across the universe, trade, fight, explore. Back
then, it was impossible to implement beautiful and detailed graphics.
Planets were nothing but one-pixel circles. As time has passed, the
computation power has increased sharply. We have very powerful
CPUs and GPUs even at home. Why not create something that we
could only dream about just a few decades ago? That’s how I was
inspired to create a procedural planet generation framework.

20

The whole idea behind this framework is to generate procedural,
real scale and real-time planets. So, what does it mean?

Worth mentioning, planets are not pre-generated, they are being
generated procedurally in real-time with the camera approaching
the surface. Planets are stored in RAM only and every time you visit
the exact place it’s always being generated from the seed value,
keeping the same result. This idea is based on the pseudo-random
functions which receive the seed value - state of the random. Just
think about it: the whole game universe can be stored as a single
number. Even assuming if it was possible to create the whole planet
at once, it would require at least 300 GBs to store the planet on a
hard drive.

21

Beginning creating a planet, the framework creates a normalized
(each vertex vector is divided by its length) cube, resulting in a
sphere. The cube faces are called chunks or quads and can be divided
into four smaller chunks. All chunks have their LoD (Level of Detail)
levels. To put it simply, the smaller the chunk, the higher its LoD
level. We need this parameter to set up the chunk groups
individually: for instance, it is very inefficient to create trees and
grass when the camera is in space and the chunks’ LoDs are low.

When it comes to a landscape, it becomes a little bit more complex.
Firstly, let me explain the idea of Perlin Noise. Basically, that’s a
pseudo-random function that produces a wave-like graph taking the
vertex position as the input. We can use the same function in 2D and
3D as well, generating a heightmap. Applying this map onto chunks
we can get a simple landscape:

22

23

It becomes clear that the surface shouldn’t be obviously ‘repeating’
in order to achieve something realistic or interesting to explore.
That’s why we use fBm (fractional Brownian motion) algorithm.
Skipping the physics part, this algorithm creates the fractal noise
(noise is being scaled and added a few times where each fractal is
called an octave):

Now planets look better, but still, it’s not enough. That’s when other
Perlin-based noise implementations can help us. There’s a good
number of them, but let’s take only 2 examples: Billow and Ridged
noises. Well, their names speak for themselves, the first one
produces a ‘billowy’ noise and the second one creates ridges.
Combining all these we can create something more complex and
suitable even for the surface exploration games:

As for the planet rendering, we can create a height-based gradient
with user-defined colors and color the planet. To render the
mountains we also define an angular-based gradient. The
atmosphere is rendered with a modified version of an accurate
real-time technique described by Sean O’Neil in GPU Gems 2
(https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapte
r16.html).

Additionally, you can create so-called ‘addons’ and modify the
framework the way you want. As an example, the planetary rings are
created by Planet Rings addon - a simple Unity component added to
the planet object which hooks required functions from the
generation process.

Want to try the generator yourself? A compiled demo project with a
100 km radius planet is available on GitHub
(https://github.com/wolfniey/Procedural-Real-Scale-Planet-Generation
-in-Real-Time). The demo works similarly to a benchmark,
calculating your average FPS (Frames per Second). After finishing the
test you can move around the planet as you wish. Use W, A, S, D to
move and mouse scroll to change the camera speed.

24

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html
https://github.com/wolfniey/Procedural-Real-Scale-Planet-Generation-in-Real-Time
https://github.com/wolfniey/Procedural-Real-Scale-Planet-Generation-in-Real-Time

25

“The goal is to

provide a

system that is

easy for

players to

understand the

possibility

space while

also giving the

designer

significant

flexibility.”

By Jesse M. Porch

https://jmporch.com/

This is a simple proof-of-concept for a system that emulates the
well-known “deckbuilder” approach to game randomization, keeping
the intuitive model but taking advantage of a few digital
enhancements. The goal is to provide a system that is easy for
players to understand the possibility space while also giving the
designer significant flexibility.

At its core, the Narrative Deckbuilder is a way of encoding discrete
events in the form of cards, and assembling those cards into
collections intuitively named decks. At defined intervals, a player
will draw a card from a relevant deck and this card will resolve,
modifying the game state as appropriate. Strategic actions on the
part of the player can modify the cards present in the deck such as
removing undesired outcomes or adding beneficial ones.

So far this closely resembles the common system used in physical
games like Dominion or Ascension, where a player’s actions on a
given turn are limited by what cards are drawn, with strategic
modification used to make the average hand more beneficial.
However, as mentioned, by implementing the system digitally, we
can easily interact with these cards in ways that would be difficult in
real life.

The two primary digital enhancements are deck composition and
deck filtering. Composition allows a temporary merging of two (or
more) decks for a single draw, then separating the decks seamlessly
afterward. Filtering, understandably, means a draw is made from the
subset of a given deck, ignoring cards that aren’t relevant to the
specific draw while keeping the overall mechanics the same. These
two abilities can be chained and intermixed, allowing complex
scenarios to be addressed with the same basic metaphor.

Example: Consider a strategy game where a player manages a city

https://jmporch.com/

26

 over the course of several years. Each week, one or more random
events can occur, which are represented by an “Events Deck.” Some
of these events are relevant only in certain seasons, so the cards are
tagged with such information, and every turn a draw is made that
uses a filter so that it only can draw events that are tagged for the
current season. Additionally, the player’s actions can directly
influence which cards are present to be drawn—performing certain
tasks around the village can cause specific cards to be added or
removed from the deck. Spending a turn stockpiling food, for
instance, might remove one of the “Winter: Famine” cards from the
deck, averting a future crisis. Though it might also insert a “Bandit
Raid” card if the village’s defenses are not sufficient to safeguard the
new supplies.

Future Plans: The above represents the core ideas that make the
system work, and I think a fairly complex event system could be
implemented with the model described above. However, there are
several other options worth pursuing that would open new
mechanical options without adding too much complexity to the
system. First of all, individual cards could track their own state,
storing information and changing throughout play. This could allow a
single card to have different effects when drawn sequentially, like
having gear that decays with use and must eventually be repaired or
replaced before failure. Secondly, adding event hooks for cards to
trigger actions during resolution would open new possibilities, like
cards that remove themselves from play rather than merely being
discarded. This would also allow cards to directly impact world state,
allowing them to be more than just story snippets.

Conclusion: Obviously the system described above is very limited,
and it can’t technically do anything not handled by an appropriately
crafted roll-on-a-table system that is aware enough to filter out
invalid results. The benefit, in my mind, is more in terms of a model
that is easy for the designer to build out while still powerful and
flexible enough to be worth using, and it provides easy hooks for the

“The benefit, in

my mind, is

more in terms of

a model that is

easy for the

designer to build

out while still

powerful and

flexible enough

to be worth

using...”

players to understand the working of the systems by portraying the
random mechanics in a form they intuitively understand. By
defining actions via the “merge and filter” model, new elements can
easily be added into an existing system and either kept separate or
integrated with others just by adjusting the specific card-drawing
commands.

A barebones implementation of this model is available here, which I
hope to be developing in the coming months to implement some of
the enhancements described above.

You can find the Git Repo and take a look a the project through this
link: https://gitlab.com/porchjm/narrative-deckbuilder

27

https://gitlab.com/porchjm/narrative-deckbuilder

28

By Hodge

https://harderyoufools.itch.io/ | @MrHodgepants

This year the University of Copenhagen and NYU ran a summer
school on Procedural Generation. My project was a small Voronoi
terrain generator in PICO-8. This article briefly skims over the major
points due to size constraints, but
you can download the complete source code and play with an online
version at http://harderyoufools.itch.io/voronoi-park.

WHY PICO-8?
While not free, PICO-8 is relatively affordable at around US$15 and
built-in mapping functions make Voronoi diagrams easy to
implement. Also, it's a platform I know which is often helpful!

VORO-WHAT-O-NOI?
Wikipedia (https://en.wikipedia.org/wiki/Voronoi_diagram) describes
a Voronoi diagram as "partitioning of a plane into regions based on
distance to points." The Wiki page has more details on the formal
definition but that summary is actually all we need. We'll implement
it in two steps:

 1) Generate a set of random points on our map; then
 2) For each x/y co-ordinate on the map, figure out which of those
random points is closest to it and mark it accordingly.

https://harderyoufools.itch.io/
http://harderyoufools.itch.io/voronoi-park
https://en.wikipedia.org/wiki/Voronoi_diagram

29

And that's it! When we're done we'll have a map divided into
regions, each one containing the area closest to one of the points.

GENERATING THE POINTS
We'll store our initial points as Lua tables - specifically, their x
position, y position, terrain type (which we'll get to later) and their
point number (to keep track of them later on).

We're using a 128x64 sized map for our park, so the x/y coordinates
are randomized within those ranges. For now, every point's terrain
type is set to 'grass'. Here's the code to generate a single point.

function add_point(point_num)
 this_point={}
 this_point.x=flr(rnd(128))
 this_point.y=flr(rnd(64))
 this_point.typ="grass"
 this_point.num=point_num

 add(points,this_point)
end

To generate the entire set we wrap the previous function in a FOR
loop:

function gen_points()
 for i=1,num_points do
 add_point(i)
 end
end

GOING THE DISTANCE
The next thing we need is a way to measure how far away our points
are. There's two methods we can use. The first is Pythagoras'
theorem, using the famous a*a = b*b + c*c equation to calculate the

distance. The second is to use 'Manhattan distance' - a simpler, less
accurate method which is basically Pythagoras' theorem with the
squares removed. Manhattan distance allows for quicker generation
but generates less natural, 'boxier' looking regions (this may be what
you want!).

--pythagorean distance
function dist(x1,y1,x2,y2)
 return
sqrt((abs(x1-x2)*abs(x1-x2)+abs(y1-y2)*abs(y1-y2)))
end

--manhattan distance
function mdist(x1,y1,x2,y2)
 return (abs(x1-x2)+abs(y1-y2))
end

30

31

ASSIGNING TERRAIN
We're using three types of terrain - grass, water and flowers. We
need to tell the generator how much of each we need:

num_points=16 -- the number of points/regions in our
diagram

grass=8 --the number of regions to set as grass
flowers=3 --the number of regions to set as flowers
water=5 --the number of regions to set as water

Note the amounts for grass, flowers and water should add up to the
total number of points, or Bad Things(tm) will happen. The demo
cart has a basic UI limiting the numbers to sensible values, so it's best
use that to change the numbers around. Once we know how much of
each terrain we need, it's easy to assign the terrain to our points.
Remember how every point was set to 'grass' when we generated
them? That means we only need to change some of the points to
flowers and water, according to the amounts we set above.

The code below goes through every x/y coordinate on the map. It
measures that coordinate's distance to each of our original points;
each time it finds a point closer than all the previous ones it sets the
terrain value accordingly. This means an x/y coordinate's terrain
may change more than once as it iterates through the points, but at
the end it always has the terrain of the closest point.

function assign_terrain()
 for i=1,water do
 points[i].typ="water"
 end
 for i=water+1,water+flowers do
 points[i].typ="flowers"
 end
end

GENERATING THE MAP
This is it! We'll use PICO-8's mset() function to set the map values to to
the terrain we set up earlier.

Once this is done for every x/y coordinate, our diagram is finished!

function set_map_values()
 --set map values
 for x=0,127 do
 for y=0,63 do
 local ldist=0
 local shortest=9999
 for i=1,num_points do
 ldist=dist(x,y,points[i].x,points[i].y)

 if ldist<shortest then
 shortest=ldist
 --set the map here
 if points[i].typ=="grass" then
 mset(x,y,1)
 elseif points[i].typ=="water" then
 mset(x,y,2)
 elseif points[i].typ=="flowers" then
 local ftype=flr(rnd(7))
 if ftype>4 then
 mset(x,y,1)
 else
 mset(x,y,4+ftype)
 end
 end
 end
 end
 end
 end
end

32

33

SHOWING THE MAP
This function draws a pixel map of our generated diagram. You'll
notice it doesn't reference any of our code from earlier - at this point
the diagram is stored in PICO-8's map data and we just need to read
it with the mget() function.

function draw_minimap(mmx,mmy)
 for x=0,63 do
 for y=0,32 do
 local tile=mget(x*2,y*2)
 if tile==1 then
 pset(mmx+x,mmy+y,3)
 elseif tile==2 then
 pset(mmx+x,mmy+y,1)
 elseif tile==3 then
 pset(mmx+x,mmy+y,5)
 else
 pset(mmx+x,mmy+y,4)
 end
 end
 end
end

34

By Elle Sullivan

http://thecreativeperiod.com/elle | @THISISDINOSAUR

Sometimes I like to write my own programming languages.
Sometimes I also like to do some procedural creature generation.
And sometimes I like to write my own programming languages in
order to do some procedural generation, using a technique called
Language Oriented Programming.

So, what is language oriented programming? It’s pretty
straightforward, you first design and write a programming language
that is tailored to the problem you want to solve, and then you write
a program in this language to solve it. The general idea is that you
spend as little time as possible on that final program, and most of
your time on the language. The language should be so well suited to
the problem that the program you eventually write in it is almost
trivial.

Example time. I’m particularly interested in procedural creature
generation. For one ProcJam, I started writing a procedural dinosaur
generator, focusing mainly on skeletons. I made some okay progress,
but I found it tiresome. I was writing so much repeated code and
syntax that had no relation to the dinosaur bones. So I came up with
a solution: to write my own programming language.

A Dinosaur

from the

original

Generator

http://thecreativeperiod.com/elle

35

This language, called Anatomy, lets me concisely define bones and
how they can change in relation to one another, letting me define a
dinosaur skeleton that’s capable of morphing into any dinosaur. But,
it let me do it in a way that’s readable even to non-programmers,
and, when I’m done, I won’t just have a dinosaur generator, but also
a tool that could even be used by non-programmers to make similar
generators, like a primate generator, or a fish generator. It could
even turn into a general animal or creature generator. People might
in theory find ways to use it to make things outside of creatures that
I never envisioned.

In many ways, it’s really not that different to more traditional
programming, gradually building up functions, classes, and other
abstractions to slowly build a more complicated program from
different building blocks. I think it can really help manage that
growing complexity. By explicitly defining the interface of your
language, it means you maintain a separation between the
machinery of generation (i.e. how things are generated) and what
you are actually generating. It means the actual bit that’s interesting,
the bit that says what is being generated, is clean and simple, and
accessible to as many people as possible.

This is just one way to use custom programming languages for
procedural generation, you can take the concept even further. One
project I’d like to attempt is an egg generator. Eggs can mostly be

A small snippet

of an Anatomy

program,

defining a

dinosaur

36

described pretty simply, e.g. “A large spherical white egg with blue
speckles”, leading to the idea of an “egg description language”. So the
user would write something like the description above, and that
would be the program, which, when run, would produce a nice
image of an egg.

But of course, I want the computer to choose what kind of egg to
generate. So I could write a program that generates these egg
description programs, and have the language just be an
intermediary, never to be written by humans. But how are you going
to write this program? I in fact have a custom programming language
to write programs that output arbitrary descriptions, called ‘Terms’. I
originally wrote it for a hackday at work, to generate ideas for
experiments. It’s pretty simple: a Terms program consists of a file
defining the structure of the description (e.g. ‘a [size] [shape] [colour]
egg with [spots]’), and then a file for each descriptor listing the
possibilities (e.g. for colour “white, blue, green, ecru…”). When run,
it then selects a possibility for each term, producing a description as
output (in this case a description of an egg). This can then be used to
trivially produce output that is a valid egg description language
program, which can then be run to produce an actual egg.

So, by applying language oriented programming to an extreme
degree, I can end up writing two different custom programming
languages just to make our egg generator, but in a way that actually
makes sense and still saves time.

Another nice benefit is that the intermediary step, the descriptions of
the eggs, is useful itself. You end up with not just an egg, but an egg
you know meaningful information about. When applied to other

Example

output of

my Terms

program to

generate

experiment

ideas

projects, this means you can potentially end up with lots of useful
information that other proc gen approaches wouldn’t have given.
E.g. it should be quite easy to write my dinosaur generator so that I
know meaningful information about what the outputted dinosaur
was like, such as what dinosaurs it’s related to, where it might have
lived, what it might have eaten, etc.

37

The

structure of

the

experiment

idea

generator

38

By Neil Bickford

www.neilbickford.com | @neilbickford

Here’s one of my favorite unusual methods for generating digital
terrain, using a piece of paper, a camera, and a computer.

1. Take a piece of paper - a napkin or a paper towel seems to work
best.
2. Holding two opposite corners, crumple the piece of paper by
pushing the corners together and introducing folds until you get a
ball about five centimeters in diameter.
3. Gently unfold and spread the piece of paper. It should now
roughly resemble a mountain range.

I like this method because it feels like the process of folding the
paper almost simulates normal and reverse faults between tectonic
plates, even though many things differ between the two.

http://www.neilbickford.com

39

Make any adjustments to your terrain. Consider its apparent
geological features, and how a larger terrain resembling this
small-scale terrain could have been formed. Also consider how the
terrain has been shaped over time, such as where people live and
how they have changed it, if they exist.. Finally, adjust the boundary
of the terrain, if it needs to lie flat or be lower relative to the highest
peaks, for instance. This process is mostly symmetric, so you can also
flip the piece of paper over to get another terrain.

We’ll use photogrammetry to turn this into a digital terrain. I’ll talk
about using Alicevision Meshroom
(https://github.com/alicevision/meshroom/releases) here, though
other photogrammetry programs are also available. We’ll only
change two of the default settings here.

4. Take a series of photos of your terrain from different angles. I
usually aim to take about 100-150 photos, and usually work my way
around the terrain in a spiral from ground level to directly above the
terrain. Try to keep the lighting and your camera’s zoom level and
exposure constant; having a textured surface underneath the terrain
also helps reconstruction. You don’t need a professional camera for
this; a phone camera should work just as well.
5. Transfer your images to the computer.
6. In Meshroom, drag your images into the Images pane on the
left-hand side of the screen.
7. In the Graph Editor on the bottom of the screen, remove the
Texturing node at the right-hand side of the screen, since later steps
don’t require the texture of the paper.

8. Finally, select the DepthMap node in the Graph Editor and change
the Downscale amount to 4 or higher, depending on the size of your
images. This should speed up depth reconstruction.

https://github.com/alicevision/meshroom/releases

9. Click the Start button at the top of the screen to reconstruct the
mesh. This took from one to two hours for me.

Once Meshroom finishes, you should see each of the reconstructed
camera positions and a sparse point cloud on the right-hand side of
the screen. Click on the MeshFiltering node in the Graph Editor and
select the text in the Output field; this is where your reconstructed
landscape is located on disk. You can now import this into a 3D digital
content creation tool such as Blender, and remove everything except
the landscape you generated. Now you have a digital terrain!

40

Note: For the image at
the start of this article, I
also added a textured
plane for water in the
midground and
background, some
volumetric fog to show
light rays and to convey
distance, and vegetation
using a hair particle
system in Blender.

41

By Kelson Smith and Brandon Campbell

@kal_sar - @BrandonJCampbel

About the authors
We are a pair of full-stack software engineers who moonlight as
game developers. In our day jobs we build enterprise systems that
handle Big Data (woo buzz words!), and we believe that some of our
experiences can be applied to the field of game design.

Our Theory
A procedurally generated world often starts as a set of modular
content buckets. The form that the world ultimately takes is a unique
combination of the content drawn from these buckets. The more
content modules, the greater the array of possibilities. But there’s a
problem -- a meaningful experience is seldom random. Of those
possibilities, there are a few interesting stories, wonderful
characters, and fascinating worlds to be explored. Unfortunately, the
probability that we will find the meaningful stories amidst the
overwhelming noise is very, very low.

We have a novel solution to improve the odds. By modelling
meaningful relationships in a graph database, we can inject context
into the generation process and increase the chances that our
modular buckets will combine into something compelling.

What is a graph database?
We love the power of graph-driven architecture. Graph databases
store information as a cloud of connected bubbles, the same way you
might when brainstorming on a whiteboard. This architecture gives
them the flexibility of a NoSql database with the query power of a
relational database. This is the same structure used in neural
networks used for machine learning.

Graph databases instead treat relationships as first class citizens,
storing both individual pieces of data (Nodes) and the relationships
between them (Edges in graph speak) as records in the database.

“This is the

same structure

used in neural

networks used

for machine

learning.”

This gives us several major benefits, including:
1. Queries that involve exploring complicated relationships become
nearly trivial in a graph database
2. Data is stored in a way that it maintains its context
3. As more varied types of data are added, the power of the graph to
surface emergent patterns grows (while a relational database would
simply become painful to work in).

Graph is already seeing wide-spread adoption in many industries,
from retail and medical to aerospace and social networks. Graph has
an immense number of applications, but we believe that an
underexplored area is it’s potential in the creative field of games.

There are many graph databases out on the market, but we
recommend Neo4j as an accessible entry point into graph
development.
Modeling a possibility space in Graph
Graph databases are used in industry to synthesize large,
disconnected data sets. This integration is governed by rules and
patterns to sift out the meaningful relationships. We have discovered
that we can reverse this workflow, modeling the basic rules that
define a possibility space and procedurally generating an instance
that follows this pattern.

Here’s a possibility space, describing the generation of a body:

42

43

With this approach we can model a hugely complex procedural
system entirely in data. This allows us to tweak both individual
parameters and large sections of our possibility space solely through
the data, meaning we can model and procedurally generate any
arbitrary subject matter using the same (relatively) simple
algorithm.

Generating instances from a possibility space
Think of your possibility space as a multidimensional cookie cutter
and your instance as a multidimensional cookie. The dough is your
content, sifted into buckets. The edges in the graph provide the
shapes that your cookie could take. This strategy helps us to
eliminate possibilities that may not make sense. Let’s take a closer
look at the torso and arm in our example space.

This model suggests that a torso might have no arms and as many as
two, with a probability distributions shifted in favor of two. Most
characters stamped out of this possibility will have two arms, but
there is room for interesting outliers.

Consider this instance stamped our possibility space:

This is a unique character. He is seven years old, he has one head,
two legs, and one arm. You can easily add personality traits and life
experiences to the possibility space, allowing you to build deep
characters whose unique history impact their AI.

This strategy lets you build your world in small, modular, but
interconnected bits with an arbitrary level of granularity and
complexity.

44

45

Making the game
With a freshly minted world stamped out of your possibility space, it
is up to you how to use it. Your instance can be something like room
layout and abilities in a roguelite metroidvania, story beats with a
branching quest chain in a procgened open world game, or
characters and motivations in a murder mystery.

While you can easily take your instance and use it simply as a
starting point for your game state, keeping your game state in the
graph can lead to some very interesting design options, as you don’t
lose any of the context you have generated.

46

By Max Kreminski and Isaac Karth

@maxkreminski - @proc_gen

Most discussions of procedural generation have focused on either
the things that are generated or the process that generates them.
Less attention has been spent on the methods that generators use to
interpret their input. Many generators take complex input and
interpret it, and the process they use to read that input is often just
as interesting as how they output something.

Recent years have seen an increased interest in approaches to
procedural content generation that interpret and meaningfully
respond to complex forms of input, often forms of input that were
not originally intended to be used as input to a generator. Challenges
such as the Settlement Generation Challenge in Minecraft have
encouraged the development of context-sensitive generators, capable
of taking an arbitrary Minecraft map and generating a settlement
that fits that particular context. Projects like WikiMystery have used
existing corpuses of open data as a foundation for the generation of
murder mystery scenarios.

Nevertheless, there is a tendency to talk about generation as though
it is primarily a process of writing or ex nihilo creation of artifacts,
sidelining the sophistication of the parts that focus on reading
complex input.

At the same time, many people implicitly assume that it is both
possible and desirable to produce an objectively correct and
unambiguous interpretation. We think that extracting
machine-usable meaning from complex input necessarily requires a
creative act of interpretation: the complexity of the input ensures
that it could always be read differently. In fact, the "incorrect"
readings of the input might lead to a generator that produces
surprising and useful outputs.

For example, many of the novel generators created for National

47

Novel Generation Month draw on the same source texts—frequently
including Alice in Wonderland, Moby-Dick, and The Odyssey—yet
produce very different outputs. One reason for this is because each
generator takes a different approach to "reading" its input text.

We propose the notion of "generativist readings." A generativist
reading is an interpretation of a text consisting of a set of rules for
generating artifacts similar to or based on the text. Much like a
proceduralist reading of an interactive text focuses on deriving
meaning from the rules or procedures within the text, a generativist
reading of a text wants to know how to produce more texts like it.
When a computer processes complex input and constructs a model
of how it thinks that text could be written, we say that it is
performing a generativist reading.

When we create generators to produce types of artifacts that were
previously exclusively handmade, we essentially find ourselves
manually conducting a generativist reading of a corpus of examples.
For instance, if a human reader was to read Moby-Dick and
handcraft a Tracery grammar that uses vocabulary and sentence
structures drawn from the book to produce sentences that sound
plausibly as though they could have been written by Melville, the

resulting grammar would constitute a generativist reading of the
text. Twitter bot creators often do something similar to this,
gradually sublimating the source text into a statistical model.

Manual generativist readings may even be an instrument of critique:
In Umberto Eco's essay "Make Your Own Movie" he proposed plot
generation algorithms in the style of various filmmakers as a way of
parodying those filmmakers’ styles.

As an illustration, compare two similar erasure poetry generators:
The Deletionist and blackout. Both of these generators turn web
pages into poetry by erasing most of a page’s text. The processes
these generators use to write their modifications are very similar.
Therefore, the difference between them lies almost entirely in how
each generator reads a page’s text prior to modification.

The Deletionist interprets the entire webpage as a single unit. It
decides which words to erase deterministically, such that running it
repeatedly on the same webpage will produce the same result every
time. It chooses which words to keep by following one of several
possible patterns.

On the other hand, blackout reads each paragraph in isolation and
makes no attempt to coordinate its reading of different paragraphs. It
uses part-of-speech tagging and probabilistic fuzzy matching of valid
sequences of parts of speech, recognizing simple declarative
sentences that could be formed by omitting words and selecting a
valid sentence.

The differences between these generators is primarily in how they
read their input. For generators that have distinct “reading”and
“writing” components, it is possible to alter or replace one part
without changing the other component and still get interestingly
different results.

48

[This is a summary of our PCG
Workshop paper “Generators that
Read”, which can be read in full at
https://mkremins.github.io/publicati
ons/GeneratorsThatRead.pdf.]

https://mkremins.github.io/publications/GeneratorsThatRead.pdf
https://mkremins.github.io/publications/GeneratorsThatRead.pdf

49

By Serin Delaunay

@SerinDelaunay

The official Tracery tutorial covers a lot of ground: word lists,
madlibs, and recursion are powerful ways of generating text, and
well-studied in the theory of context-free grammars. But the
possibilities of Tracery and Cheap Bots Done Quick/Cheap Bots Toot
Sweet are much wider than that! In this article I'll describe a few
unconventional ways of using these technologies, with examples
(mostly by me).

Large Generated Grammars

CBDQ/CBTS accept grammars and reply lists up to 4 megabytes.
That's about 4 million characters, and easily enough for tens or
hundreds of thousands of rules. It's enough to store an AI for the
game of Noughts and Crosses [https://botsin.space/@xo], or the
slightly larger game of Sim [https://botsin.space/@sim]. It's enough to
store 17,000 fake piano scales [https://twitter.com/DailyPianoScale],
or 11,000 snippets of news articles plus Tristan Tzara's method of
generating Dadaist cut-up poetry [https://twitter.com/DadaistTwit].
It's enough to contain a few NaNoWriMo novels. Maybe you could
even fit The Oregon Trail in it?

https://botsin.space/@xo
https://botsin.space/@sim
https://twitter.com/DailyPianoScale
https://twitter.com/DadaistTwit

If you want to make a grammar that big, you'll need tools. Python is a
great language for generating text, and has built-in support for the
JSON format that Tracery uses. You could just run your bot entirely in
Python, but with CBDQ/CBTS you won't have to worry about keeping
your computer online.

If you don't fancy learning another programming language in order
to generate code in Tracery, you can even use your text editor's
find-and-replace tool to transform whatever raw data you have into
Tracery format.

If you like Markov chain bots, you can use Cheap Markovs Traced
Quick to easily make a Markov chain grammar that'll fit on CBDQ
(depending on the size of your input text).

Saved Symbols

Saved symbols are described in the official Tracery tutorial. You can

50

use the syntax "[symbol:#other_symbol#]" to dynamically change the
contents of the "#symbol#" tag in your grammar. You can do this
repeatedly, and use "[symbol:POP]" to change back to the previous
value. This has its limitations; a symbol call in this syntax will only
be evaluated once, and the result will be saved. Nevertheless, the
possibilities are endless:

* Setting two or more symbols at once, allowing you to create groups
of values. This is great for ideas like translations, inflected words,
and opposites.
* Swapping two symbols. If you set a "temporary" symbol to symbol
X, you can set symbol X to symbol Y and symbol Y to the temporary
symbol. This can be used for adding a little absurdity to a story, or
extended to shuffling a deck of cards or generating Dada poems.
* Hiding an active symbol. If you have a symbol that calls another
symbol, or saves data to a symbol, you can turn it off by using
"[symbol:]". Instead of changing the grammar, that symbol will now
do nothing. You can turn it back on with "[symbol:POP]". This trick is
the game-changer for Tracery programming.

51

Switches
Turning an active symbol off and on is a step up from writing
context-free grammars, but as a tool it's still blunt. A more flexible
system is to have two symbols switchA and switchB, and only one of
them active at a time. Then you can have a third symbol that calls
them both: "#switchA##switchB#". This switch could flip every time
it's called, or be controlled by an independent symbol. This technique
needs a lot of infrastructure if you want multiple switches to work
with other, or if you want more states on your switches, but you've
got the beginnings of a circuit board here and the sky's the limit!

Binary Data
CBDQ and CBTS have syntax for rendering images from SVG data.
SVG is a text-based vector graphics format, and it's great for
retrieving other images, stretching, filtering and juxtaposing them,
and rendering text and polygons over them. Alternatively, you could
use Tracery to generate a binary-format image (I recommend BMP),
write it out as a percent-encoded data URI, and put it in an SVG
<image> tag. [https://botsin.space/@bmphax]

52

https://botsin.space/@bmphax

53

It would be great to see files in other image, audio, and video formats
generated or altered by Tracery. Their compression schemes and
Tracery's limited methods of computation could combine into some
strange sights and sounds. Hopefully CBDQ is able to upload
databended GIF/video!

Javascript in SVG
Also, SVG supports embedded Javascript, so really you can draw
anything you like without having to worry about trying to turn a
grammar into a circuit board. Derek Ahmedzai's
[https://botwiki.org/bot/trumptaxbot/] was a good example, using
Javascript to make some simple calculations and show the result.

Turing Machine
In some versions of Tracery (unfortunately not the version that
CBDQ's backend uses), a bug allows you to work around the
limitation on active symbols when saving a value. So you can, for
instance, pick two words from a list, string them together, and call
the symbol with that name. Or repeatedly push symbols onto a pair
of stacks and use them as an infinite tape. Or write a Turing machine
transition table, and use my compiler
[https://github.com/serin-delaunay/tmtracery] to make a Tracery
grammar out of it.

Tracery is Turing-complete.

https://botwiki.org/bot/trumptaxbot/

By Sean Butler

www.seanbutler.net | @butlersean

I DON'T LIKE PERLIN NOISE There, I feel better already!

This improved feeling comes at the risk of committing procedural
blasphemy*. You’d be right in saying Perlin noise is very useful. Its
also complicated and for some of us opaque.

A multilayered, random-ish waveform, Perlin and other** noise
systems can be put to use making Waves, Islands, Caves etc. Noise
systems generate these structures easily because they produce a
repeating output that is never quite the same. Variations in the
output are a similar scale and can have a distinctive shape, allowing
us to use it as a source for hills or islands etc which are created by
the same geological processes.

One way to improve the shape of the landscapes is to gradually
increase scale on the y-axis, making the higher points of the
landscape more pointy. A profile more closely matching mountains
and hills.

* An ‘electric sinner’ could use AI, and NLP to codify the rules of
religious texts. Build a machine to break those rules perhaps
automatically tweeting results. Maybe inciting others to commit sin
and finally in action. Somewhat like a morality play (some might say
that video games are already doing this better anyway).

Public Domain, via Wikimedia CommonsWebmaster.vinarice CC BY-SA 4.0 via
Wikimedia Commons

54

http://www.seanbutler.net

55

High end procedural generation of sand dunes is complex with
authentic outputs that may not appropriate for gameplay. Journey’s
gameplay relied on hand designed dunes. Extra rendering passes
added interest. Conversely in Meteor Storm Escape we included a
dune racing level, we compromised all authenticity for a challenging
and exhilarating player experience.

We have a choice, from arbitrary algorithms and heuristics which
generate forms useful for gameplay, to simulations whose internal
factors accurately replicate the internal states and dynamics of the
system found in reality whose aspects we find valuable for our
game.

Plate tectonics allows volcanoes to form along long wiggly lines.
Using a move-turn, loop to manipulate a sequence of vectors we can
steer a random walk in a direction. Parameterising the length of the
vectors and size of change in orientation, to create linear-ish path as
the place where the world’s crust is thin.

* Lets call all these value noise systems Perlin noise to avoid
sentence mangling.

56

var rotation = constAngle * ((Math.random() + Math.random())-1)
Turn (0.0, 1.0, 0.0, rotation)
var distance = constDist * (0.5 * (Math.random() + Math.random()))
Move (0.0, 0.0, 1.0, distance)

This approach bears no relationship with the forces involved in the
joining or separating of two tectonic plates, but can easily be tweaked
to produce sequences which bear a resemblance to the jagged shape
of the Mid-Atlantic Ridge or match specific gameplay requirements
such as maximum distance between islands.

Assuming the direction and velocity of ejecta is random, but the angle
of ejection follows a bell curve.

var angle = ((Math.random() * Math.PI/2) + (Math.random() *
Math.PI/2)) /3
var direction = Math.random() * (2 * Math.PI)
var velocity = minvel + (Math.random() * 2)

Adjusting the range and distribution of these values has an impact on
the shape of the islands produced. You might prefer more caldera,
more sharp jagged peaks etc. Tweak and see what you get.

We could generate rigid bodies and run the engine’s physics system.
A simulation is not always an option on web or mobile. Instead

57

algebraically, one line of code calculates the approx landing point of
that which is thrown out of the volcano.

var distance = ((velocity * velocity) * Math.sin(2 * angle)) / 9.8

The distance away that something lands is proportional to the square
of velocity times the sine of the angle it is ejected at, divided by the
gravity. This assumes the ejection point isn’t higher or lower than the
landing point. Simple trigonometry will translate the distance and
direction into a vector offset.

var deltax = Math.sin(direction) * distance;
var deltaz = Math.cos(direction) * distance;

We can then do a little maths on to get a vertex index where it lands.

var coords = new THREE.Vector3();
coords.x = Math.floor(centre.x + (deltax * (this.size * 0.5)));
coords.z = Math.floor(centre.z + (deltaz * (this.size * 0.5)));

var meshVertexIndex = (coords.x * (this.size +1)) + coords.z;

Finally raise the vertex a little!

meshVertex.y += 0.01;

The mountains generated have a various shapes, caldera, ridges,
pointy etc. As islands they show convex and concave features around
their edges.

58

59

ISS Earth Observations experiment and Image Science & Analysis
Group, Johnson Space Center. Public domain via Wikimedia Commons

Producing accurate landscapes is complex and computationally
expensive, noise systems difficult to tweak. Approximations are
lightweight, flexible and easier to understand. The maths is simple
trigonometry and random numbers. Simple algebraic simulations
close the ‘Gulf of Execution’ associated with procedural generation.

60

By Maria Mishurenko and Gordey Chernyy

 www.bizarrebarber.com | @marmishurenko

When we started to design VR action game Bizarre Barber a year
ago, we had a team of 2 people. We wanted to make accessible, fun
action game that was inspired by our experience of moving to
America and trying to grasp all the alienation and weirdness of
immigration.

In Bizarre Barber, player play as the last human barber left after the
apocalypse. People achieved singularity and can’t afford to have
bodies anymore. The wealthiest have heads, but hair absorb
post-nuclear radiation and barbers are helping people] heal by
cutting hair. We wanted to make the characters surreal and diverse -
with the New York subway being the main inspiration. In fact, we set
up all levels to look like bizarre mashup of several US subway
systems.

With all the gameplay / programming / VR testing problems, it
quickly become apparent that we can’t afford to individually model,
texture and rig more than 200 character heads. So we decided to
build character head / hairstyle generator in Houdini. When it was
ready, we put the pipeline and characters to test and had some
interesting discoveries.

Curation sometimes takes too much time
One of our reasons to build the generator was saving time. But, the
process of sifting through dozens of generated heads to pick the best
ones wasn’t particularly quick. It was also surprisingly boring and
non-inspirational for us as artists: it didn’t allow any serendipity. So
we decided to move on and include some of the manual adjustments,
which led us to…

Trying more handcrafted approach to procedurality
We set up a “mother” character template and then through a series
of Houdini takes iterated manually with settings. We rebuilt the

http://www.bizarrebarber.com

61

creation system the way it takes no more than 3-4 minutes to create
an entirely different, manually adjusted character. That worked for a
bit, but after creating 50-60 characters this way we realised that they
tend to be suspiciously similar-looking!

Eliminating biases in art creation is important!
The easiest way to ensure true diversity without feature creeping the
system was to invite as many different creators as possible. We
invited the wonderful NYU Game Center community members and
asked them to build characters for us. People start unconsciously
building characters that looked like them and invent wonderful
combinations of colors and shapes that we didn’t think was possible!
The problem was finally solved, or at least we thought so…

Playtesting will destroy (and also save) you
We set up a Houdini-Unity exporting pipeline (unfortunately Houdini
engine doesn’t work in real-time) and started to massively playtest
the characters. Since the game have rhythmic nature, players always
expect to find some patterns in gameplay design - that much we
knew. But we absolutely did not expect to find that our idea of
hundreds of completely different characters didn’t resonate

62

with players! They wanted certain characters to repeat from time to
time, to see them more than once, to come up with a story for them. It
was very sad, but necessary to scrap lots of the good characters from
the gameplay in favor of repeating the best ones. We also gave
distinct voices to those who survived the art purge. That seem to
improve the experience and made people care more about the
characters. Eventually, we made more levels for the game than
planned, so all the scrapped characters returned in other roles (as
bosses and spectators).

Final art direction pass is a glow-up for your procedural children
We had a lot of folks to help us making the game, one of our advisers
was a prominent art director with lots of experience working in
spatial mediums. He suggested to refine the color palette and
decrease the number of traits / features to achieve sleek and
distinguish look. For us, it was very important to hear, because the
constant switching between technical design of a system and actual
character creation was mentally exhausting. That was a constant
battle of practical and creative mindsets and having an outside
person to take a look and point at the shortcomings was very
refreshing.

Using procedurality and creating custom systems for asset generation
is very important for small indie team with a limited budget.
However, there are tremendous risks and challenges to that,
especially when designing tools for emerging media games, like VR
and AR. Our main takeaway is the idea of developing the system
alongside with regular playtesting. That will require to set up specific
pipelines from the very beginning, but let you avoid extra work along
the way.

Maria Mishurenko and Gordey Chernyy, Synesthetic Echo studio
co-founders. Developers of Bizarre Barber.
(images are renders from Houdini, with the approximation of hair look, as
the hair are being automatically generated in Unity)

63

By Lee Tusman

http://leetusman.com/

http://leetusman.com/

64

By Joseph Alexander Brown, Hamna Aslam, and Nikita Lozhnikov

@jb03hf, @Hamna72, @lozhn from Innopolis University @InnopolisU

The question as to if a computer can be said to be creative is a hotly
debated question of philosophy. Some make appeals to the issues of
the Chinese room in that computers can build things but not
understand what they produce, making humans distinct creative
forces. Others make claims based on the Turing test in which
emulation should be seen as proving a property as esoteric and
subjective as intelligence or creativity, and surely if the computer
artwork cannot be told apart from a human creator, either they are
both creative, or the concept of creativity has little meaning. As
these debates rage, the news media has grasped on to single points
and made definitive claims that computers are not of creative stock
via an argument that their science editor happened to find in a press
release from some University or another that makes one of the
points and then states this is a definitive outcome. It implies that
scientific debate is settled by public press decree.

As educators and creators of generative systems, we were confused
by reports in our news stream which stated so definitively an answer
to the question that is under debate in the Introduction to AI class at
Innopolis University. It was rather heavy-handed to call the
discussion to be closed. Hence, we asked our students to join in on
this conversation and create their own works for an art contest to be
evaluated by a set of humans, and the first #InnopolisAIArt contest
was formed. For the second assignment for the Introductory Class
on AI, we decided to run a contest with the following rules:

⦁ The process implemented would need to be an Evolutionary
Algorithm. This choice was made to make the content of the
competition, similar to what was being taught in lecture.
⦁ The process implemented should take a 512 by 512-pixel
image as input. This was made to allow for a fitness function to be
created. The size selected as several available test images were
generally of this size. During the contest, a set of images would be

65

given as inputs, unknown to the developers.
⦁ The process implemented should present a 512 by 512-pixel
image as output. This was based upon the size of the input image.

Other than these concerns, made primarily due to the available
resources and the requirements of the course and curriculum design,
no other conditions were set on the images created in the first stage
of design. For the contest, we limited the set of base images for a
generation. This limitation was to ensure a levelled playing field, a
selected input image could inherently be more beautiful than that
used by another student. Further, it would focus the design on
generating an artistic creation without an assumed input image,
meaning the created method would need to be general. The students
would select one target image from the set and provide an output
into an online collection system. They then were allowed to pick
three images from their fellow students, those with the most
selections would then be sent to a panel of guest judges. The guest
judges were selected for their backgrounds in AI, PCG, Art, or a
combination of the factors. The judges were presented with six
images which had emerged as chosen favourites of the students and
provided a ranked ballot. In the end, the scores were close. However,
three finalists emerged that only scored a point away from each
other.

Thank you to our guest judges: Daniel Ashlock, Mike Cook, Rhoda
Ellis, Timur Fazullin, James Hughes, Elle Sullivan.

The class enjoyed the project-based method of creation and having
the freedom in the implementation. The three finalists each received
a high-quality framed print of their work, and the grand prize was a
t-shirt with the winning image. The final announcement was
recorded at the end of the semester and can be viewed at
https://youtu.be/ARSzT-EXuYM and works in progress were posted to
Twitter under the #InnopolisAIArt hashtag. The plan is to continue
on this practice in the class, due to its educational value and the

66

67

enjoyment in the learning process for all involved. We would invite
anyone wanting to join the guest judges in future to contact the
authors.

First place: Temur Kholmatov

Second Place: Daria Miklashevskaya

Third Place: Kamil Saitov

68

69

By Terry Trowbridge

http://artbar.org/

Does generative poetry need a theory of forgetting? Generative poets
are familiar with substitution and erasure. Those are not the same as
forgetting. The difference is hard to explain, for lack of a good
definition of what it means “to forget.” For example, are repressed
memories forgotten or erased? Are repressed memories just moved
from a metaphorical desktop into a metaphorical partitioned drive?
Are they forgotten if they can be recalled? Are they forgotten if they
cannot be recalled but hey still influence decisions? The question
about poetry, though, can be partly answered by examining two
different ways of representing subtraction: a poem that represents
forgetting as a writing process, and a poem written specifically to
represent erasing characters as a writing process.

This short theoretical essay is meant to pose a challenge. There are
poems that were generated through an action of forgetting. There
are poems generated through an action of erasure. Can we design a
machine that generates poems through forgetting, rather than
through erasure? In order to try, we need a working theory of
forgetting that can identify a difference between erasure and
forgetting in poems.

Erasure poetry has a burgeoning literature of primary sources and
literary criticism, both for human generated and
computer-generated poems. For the purposes here, whatever process
of computer generation used, erasure means that the computer is a
tool that substitutes an eraser on the previous generation of paper
media. The computer system is a more complex tool for deleting text
or, sometimes, can be seen as adding or subtracting space in a field
that is like an enhanced page. Erasure poetry is something like an
analog version of hypertext. Rather than use hypertext though, the
goal is to contrast erasure with forgetting. Therefore, what slam
poets call “page poetry” is useful, because poetry of forgetting is a
human act on paper (so far), and therefore

http://artbar.org/

the non-digital medium should be the starting point.

Gregory Betts’ 2009 project The Others Raisd in Me: 150 Readings of
Sonnet 150 is erasure poetry. Betts begins with the entire text, and
spacing, of Shakespeare’s Sonnet 150. He then generated 150 poems
by erasing characters. The book is divided into 14 chapters, each
chapter titled with the next line of Shakspeare’s poem (the first
chapter is titled, “O from what powre hast thou this powrefull might”
etc.). Betts coordinates the loose meanings and forms of the poems to
the chapter title.

Once the premise is explained, reading Betts’ book for critical
appreciation is synonymous with reading it to glean the procedure
for each poem. The erasure is deliberate, probably. Where it is not
deliberate, the poems are still sorted by chapter. For example:

85.

powre corrodes
by brute
hate (Betts, 2009, 133).

Each poem is unique. They are recognizable as poetry to a novice
reader of Canadian literature, generally.

Poetry of forgetting is rare. There is an example in Eugenia Zuroski’s
2019 chapbook Hovering, Seen, titled, “The Poem I Wrote in my head
While Watching Dovzhenko’s ‘Earth’ and Can’t Remember” (Zuroski,
2019, 8). The text goes like:

a [something something], a [something
something], a [something], a
[something]

70

71

All of the poems in Zuroski’s chapbook allude to an act of
remembering. The title Hovering, Seen might allude to a quality of
memory as a suspended image in the context of one’s mind.

What makes the process of forgetting into the writing process, rather
than an incidental challenge? Writers of any sort can sympathize
with forgetting lines of text as a constraint on a writer. However, this
poem is specifically written by forgetting lines of text.

First, the reader is alerted by the title. There are famous examples of
poetic fragments that were cut short by forgetting, though, like
Samuel Taylor Coleridge’s Kubla Khan, which he supposedly could
not complete because he dreamt the lines and forgot them in the
process of waking up. Not so, with Zuroski.

For Zuroski, forgetting the lines is the content. In humans,
forgetfulness is often accompanied by a sensation of a thing
forgotten, once the poet realizes they used to know a line, or an
image, and have lost it. The forgotten mental object is replaced by a
feeling of it’s loss, and often, a sensation of its size or approximate
number. Thus Zuroski can compare the set of [something something]
to the set of [something]. The sensation of forgotten mental objects is
produced on the page using square brackets []. They are not erasure,
but a syntactical representation of the sensation of a forgotten
fragment with the word “something” and the brackets representing
the feeling or act of forgetting

The comparison of these two (or one hundred fifty-one), poems by
Betts and Zuroski implies a difference between erasure and
forgetting as procedures for poetic generation. Can that difference be
examined and done by machine?

Works cited
Betts, Gregory. (2009). The Others Raisd in Me: 150 Readings of Sonnet 150. Toronto: Pedlar
Press
Zuroski, Eugenia. (2019). Hovering, Seen. Toronto: Anstruther Press.

