
Issue 2

Davide Aversa
Heather Robertson
Davide Prati
NoobStudios
Zachary Spector
Quantum Potato
Serin Delaunay
Łukasz Hryniuk
Rick Hoppmann
Joseph Brown
Valtchan Valtchanov
Luke O'Connor
Tom Coxon
Ben Samuel
Pavel Oreshin

Contributors:

Editors: Jupiter Hadley - @Jupiter_Hadley
 Joseph Brown - @jb03hf

Marcos Donnantuoni
Matthew Keff
Elle Sullivan
Peter Christian Jørgensen
Mike Cook
Marco Scirea
Matthew Santacroce
Mark Rickerby
Brandon Yu
Gillian Smith
James Earl Cox III
Jasmine Otto
Joseph Alexander Brown
Adam Summerville

Ahmed Abuzuraiq
Paul Jeffries
James Ryan
Kate Compton
Ethan Edwards
Munir Makhmutov
Andrei Gusev
Jason Grinblat
Heather Kelley
Audrey Moon
Owen
Hamna Aslam
George Baron
Isaac Karth
Bulat Lutfullin

Organisers:
Azalea Raad, Joseph Brown,
Jupiter Hadley, Michael Cook,
Rachel Hwang

Art Packs By: Ajay Karat AKA
Devil's Garage, Cryoclaire

Speakers: James Ryan, Jupiter
Hadley, Kristin Siu, Mariano
Merchante, Mitu Khandaker,
Rachel Hwang, Tyriq Plummer

Tutorials By: Bruno Dias,
Christer Kaitila, Joseph Parker,
Melanie Dickinson

Thanks to: Alex Champandard, Ben Porter,
Blanca Pérez-Ferrer, Gabriella Barros, Innes
McKendrick, Jo Twist, Katie Rose Pipkin,
Mitu Khandaker, Phoenix Perry, Rami
Ismail, Simon Colton, Strangethink, Tom
Betts

Cover Art by: Matthew Keff

Some header/footer patterns from La
Boite à Tortue’s Procedural Tileset
Generator:
https://tilegenerator.tumblr.com/

1

https://tilegenerator.tumblr.com/

2

To Our Kickstarter Backers

Abian Hernandez
Adam Hill
Adam M. Smith
Adam Norton
Adam Summerville
Alden Etra
Alessandro "NeatWolf" Salvati
Alex Swaim
Alexander Zook
Alistair Roche
Andre Haensel
Andrew Armstrong
Andrew Kuntz
Andrew Lim
Andrew Maxim
Andrew Plotkin
Andrew Sutherland
AngoraFish
Anita gray Saito
Anne Sullivan
Ashley Elsdon
Åsmund Aqissiaq
Arild Kløvstad
Atul Varma
Aviv Beeri
Belchingcultist
Ben
Ben Brooks
Ben Bruce
Ben Lambell

Ben Wells
Benjamin Vance
Billmaya
Bob Culley
BrettW
Brian Dysart
Cameron
candeira
Cara Warner
Carol Beck
Charles Tangora
Charlie Croft
Chip Lynch
Chris Janes
Chris Knight
Chris S
Chris Welch
Christiaan
Christoffer Holmgård
Pedersen
Christopher Mangum
Christopher Weeks
Chrisx2ds
Ciro Durán
Claire Blackshaw
Corey Farwell
Coyan Cardenas
Csongorb
D.Rail
Daimadoshi_CL

Dan Duggan
Dana Chayes
dananddna
Daniel Currie Hall
Daniel Gonçalves
Daniel Rehn
Daniel Wildschut
Darkliquid
Darren Grey
Dave LeCompte
Dave R
David
David Berghoff
David Pittman
Davide Aversa
Delibean
Douglas Gregory
Drew Petersen
Dushanth Daniel Ray
Dylan
Eclogiter
Eijmans
Eleanor
Elliott Draper
Emil "AngryAnt" Johansen
Emil Ng
Emily Short
Emil Ng
Emily Short
Eric Schwarzkopf

Without the following people who supported our Kickstarter, we would not have been able to
fund the amount of assets, tutorials, talks, and other aspects of the ProcJam. Thank you ever
so much from the bottom of our hearts.

3

Ethan Edwards
Evan Cobb
Evan Jones
Fausto Fonseca
Fed Kasatkin
Feufochmar
Francis Fitzgerald
Frank Lyder Bredland
GapGen
Gareth Cadman
Gary Steinke
Gautier Nadé
Gavin Inglis
Generesque
George Koutsikos
Giles Richard Greenway
Gillian Crowley
Gillian Smith
Guest 442277269
Guilherme Tœws
Guillaume
Hector Dearman
Henry Lisowski
Hodge
Ian Fagan
Ian Horswill
IdleDice
Isaac Fulkerson
Isaac Karth
Isquiesque
Jack Everitt
JakeTU
James
James Allenspach
James Coote

James Ryan
Jamie Woodcock
Jason Grinblat
Jeremy Apthorp
(nornagon)
Jim Whitehead
Jo
Joel Davis
Joerg Reisig
John
John Hattan
John Kane
John Oliver
John W. Bruce
John Watson
Johnicholas Hines
Jon South
Jonny
Jose Lema
Joseph A Brown
Joseph Carter Osborn
Joshua Sharp
JReynolds
Julien Delezenne
Jupiter Hadley
Jurie Horneman
Justin
Justin Loudermilk
Kate Compton
Kaydiv
Kayn
Kemp
Ken Gagne
Kevin O'Neil
Kirsty

Kitfox Games
Konstantin Kitmanov
Kris Loukas
Lee woo yeon
Liza Daly
Llaura
Long2Wed Marriage
Services
Lucile
Luke Miller
Luke Miller
Lynn Cherny
maetl
Malena Klaus
Marc Destefano
Marco Scirea
Mark Fletcher
Mark Gritter
Mark Renner
Martin O'Leary
Martin Randall
Matt Walsh
Matthew Ahrens
Matthew Crossley
Matthew Guzdial
mattperrin
Michael Coulthurst
Michael Gradin
Michael Nørskov
Mike
Molly O'Brien-Manley
Monica Neddi
mono
Morteza Behrooz
Nat

4

Natalie Freed
Nate Marsh
Nathan Pride
Nathaniel Mitchell
nemmons
Niall
Nicholas
Nisse Hellberg
Noah Benjamin Maze
Noah Swartz
Pablo Farias Navarro
Pat Ashe
Patrick Ewing
Patrick Reece
Paul
Paul
Paul Sottosanti
Peter B
Petri Nakari
philnelson
Pier Luca Lanzi
Pierce Brooks
Prad Nelluru
quantumpotato
Quinn Monk
r618
Rachel Hwang
Rebecca Paliwoda
RevDanCatt
Richard Alison
Richard Gillen
Richard Newbold
Rob Homewood
Robert Kohut
Robert Masella

Robert Turner
Robin Baumgarten
Robin Todd
Rodolfo Rosini
Rogelio E.
Cardona-Rivera
Ronny Anderssen
Rune Skovbo Johansen
RustyHarper
Sally Kong
Sam
Scott Grant
Sean LeBlanc
Sean Marzec
Sean O'Rourke
Several
Shaddock Heath
Shawn
Shawn Graham
Shobha Kazinka
SirPsychoBexy
skeptic
T. A.
taurisince1983
Tero Parviainen
Thomas Smith
Tieg Zaharia
Tim Stoddard
TJ Houston
Tom Howard
Tommy Thompson
tor gausen
Travis Fort
Trevor Adams
Tristam MacDonald

Troy Humphreys
Tyler
Valentina Lore'
William Hensley
Young-hoon Lee
Zachary Spector
Zack Johnson
Zebulon Pi
ZiJing

& everyone who shared
our Kickstarter and who
told a friend about it.

5

The ProcJam is a unique, relaxed game jam that aims to make
procedural generation accessible and to show off projects that are
pushing the boundaries of generative software. As a whole, this jam is
laidback, easy to enter, and fun to be apart of. We are working to
build a community of friends and peers across disciplines all
interested in procedural generation.

The ProcJam takes place across nine days, including two weekends.
You can enter anything you’d like - art, video games, board games,
tools, anything you’d like to create as long as it has something to do
with procedural generation/random generation/generative software
etc. You could even take an existing project and add some generative
magic to it for the jam! If you start before the start of the jam or enter
your project after the end of the jam, that's fine as well.

ProcJam is also more than a game jam - with the help of our
Kickstarter Backers, we are able to fund art packs, tutorials, and talks
all on generation. These resources are put out publically as ways to
grow the community and help get people into generation.

This is truly a community effort, even down to this zine which was
made from submissions from the ProcJam community.

We hope you enjoy it!

Make Something That Makes Something

By Davide Aversa

@thek3nger

I like PCG, and I like having it with me all the time! For this reason, I
wrote a cellular automaton based procedural caves generator
algorithm that fits in a business card. I didn’t write an algorithm to
generate design for my business cards, that would be unoriginal (but
cool). I wrote the algorithm on them.

The algorithm itself is not new and I have already written it many
times. Cellular Automata are my personal approach to “Hello
World”: when I want to try a new language, I write a PCG algorithm
in it.

The idea started from an article by Matt Zucker, see
https://mzucker.github.io/2016/08/03/miniray.html, in which he
describes his challenge of writing a ray tracer algorithm that fits a
business card. I thought it was cool. Even if I never got into code
obfuscation challenges - it makes my OCD cringe and I lay down in
pain - I thought it was a nice idea for a business card. I wanted to try.
Of course, I could not do the same with a ray tracer algorithm; I
already had my problems with the non-obfuscated version. Then I
remembered that I already had a C++ code doing something I like
(Procedural Content Generation, indeed) that is a good candidate for
this: my cellular automaton code.

“I didn’t write

an algorithm to

generate

design for my

business cards,

that would be

unoriginal (but

cool). I wrote

the algorithm

on them.”

6

https://mzucker.github.io/2016/08/03/miniray.html

using i=int;template<i W,i H>struct minicave{bool
map[H*W];minicave(){for(i r=0;r<H;r++){for(i c=0;c
<W;c++){k(c,r)=c==0||r==0||(c==W-1)||(r==H-1)||r!=
H/2&&rand()%10<4;}}}i e(bool C){for(i r=0;r<=H-1;r
++){for(i c=0;c<=W-1;c++){i w=nw(c,r,1);k(c,r)=k(c
,r)?w>=3:C?w>=5:w>=5||nw(c,r,2)<=2;}}}i nw(i x,i y
,i r){i w=0;for(i Y=y-r;Y<=y+r;Y++){for(i X=x-r;X
<=x+r;X++){if((X!=x||Y!=y)&&(X<0||Y<0||X>W-1||Y>H-
1||k(X,Y)))w+=1;}}return w;}bool&k(i x,i y){return
map[x+y*W];}auto str(){std::string s;for(i r=0;r<H
;r++){for(i c=0;c<W;c++){s+=k(c,r)?"#":".";}s+=
"\n";}return s;}};i main(){srand(getpid());
minicave<80,80>m;for(i j=0;j<4;++j){m.e(false);}m.
e(true);std::cout<<m.str();}

It is not near as complex as a ray tracing algorithm but it was
fun. The final code is shown above. It simple and unpolished but
it is functional and modular too! You can see an example output
in the images.

7

By Kate Compton

@GalaxyKate | http://www.galaxykate.com/

8
=

http://www.galaxykate.com/

9

“The camps

designed by

the generator

are compared

to the designs

generated by

humans via a

game.”

10

By Hamna Aslam & Joseph Alexander Brown

@Hamna72 & @jb03hf

According to the United Nations Refugee Agency (UNHCR), on
average one person is forced to flee their home every three seconds
due to war [3]. Presently, relief camps are the only hope of shelter
for majority of these people. Relief camps are not only a roof for
temporary shelter, they have become fully organized management
systems.

The design of relief camps is a constrained optimization problem
with high dynamicity in constraint variations. We have developed a
generator for relief camp designs which takes a list of relief camp
utilities as an input, and finds the sub-optimal design within the
specified constraints.

The generator utilizes a Genetic Algorithm which places tents, water
sources, and toilets on a two-dimensional space and checks them
against the requirements provided by the World Health
Organization (WHO) and the UNHCR for humanitarian response
standards [1,2]. The generator provides the fastest way to see
multiple designs against the same settings of resources and the most
feasible one can be picked to be deployed.

Presently, the generator includes tents, toilets, and water containers
to build camps. The camps designed by the generator are compared
to the designs generated by humans via a game. The relief camp
manager game allows a player to set up the camp according to their
preferences and the fitness formula that has been implemented is
also used as a feedback for the player as a score. Figure 1 shows a
screenshot from the relief camp manager game. The human player
can generate designs in the game and can compare the effectiveness
of their designs against the software-generated camp designs for the
same number of resources. The human solution can then be
optimized by this comparison.

We have run human competitive tests where human players
have designed relief camps via game and the generator has also
produced designs for the same settings and number of
resources. The results showed that the generator outperformed
human players when the designs were compared according to
the standards from the WHO and UNHCR.

11

Table 1: Guidelines and figures by WHO and UNHCR implemented in the
game [1,2]

Figure 1: Camp setup Interface

“The

motivation

behind our

work is to

improve the

relief camp

design process”

12

As the world is facing increasing number of displacements and
global refugee crises together with uncertain and limited resource
availabilities, finding the best possible designs for camps is a
challenging issue. The generator generates designs in a short period.
Through the relief camp game, camp managers can compare camps
according to their priorities. Both solutions generated by the human
player and the generator can be combined or compared to get the
best possible outcome.

The motivation behind our work is to improve the relief camp design
process by developing a methodology that can help in generating
camp designs which are as near to the humanitarian standards as
possible in the presence of limited facilities and resources.

For future work we are looking forward to considering more utilities
of relief camps in the generator as well as in the game. More
information about our work can be found in [4].

1. Reed, R., Godfrey, S., Kayaga, S., Reed, B., Rouse, J., Fisher, J., Vilholth, K., Odhiambo, F.:
Technical notes on drinking-water, sanitation and hygiene in emergencies (2013).

2. UNHCR: Comparison of humanitarian standards, the sphere project and UNHCR emergency
handbook (2001). Accessed 26 Oct 2016

3. Yonetani, M., Lavell, C., Bower, E., Meneghetti, L., O’Connor, K.: Global estimates 2015,
people displaced by disasters. In: IDMC, Internal Displacement Monitoring Centre (2016).
Accessed 6 Oct 2016.

4. Aslam, H., Sidorov, A., Bogomazov, N., Berezyuk, F., Brown, J.A.: Relief Camp Manager: A
Serious Game using the World Health Organization's Relief Camp Guidelines, Applications of
Evolutionary Computation (2017), pp. 407-417. http://tinyurl.com/reliefcamp

References:

Life simulation is a natural
genre for games that use
procedural generation.
There's really no limit to how
much of the world the player
might see, or how many
systems they might interact
with; if the player can't
understand it all, and has to
fumble through with gut
feelings and best guesses,
that's verisimilitude! But it's
not such an accessible genre
for developers, for the same
reasons. Life sim games are as
complex as roguelikes, but
with much more persistent
world state to keep track of,
and it's not quite so easy to get
the player to accept any
breaks with reality, because
it's such a familiar reality.

I was playing Dwarf Fortress,
the most visibly "proc gen-ish"
example of the genre, and
getting frustrated at some of
its technical shortcomings.
First the interface, which
others have complained about
at length, but then, there were
lots of dedicated modders
trying to improve that.

Why should Toady worry
about the interface when the
part he's actually good at is
the world model? I'd have
been perfectly content to just
play a modpack if I didn't have
to wait months after every
major release. So...why *did* I
have to wait? Why, when it
appeared that most of the
established systems were
unchanged, did the modders
have to redo everything?
Building my own modded
copy of the game provided an
answer: the game is only
moddable insofar as it stores a
lot of things in configuration
files, and lets people change
those. For the really useful
stuff, like the graphical
frontend Stonesense, a
dedicated team of modders
had to hack the game and
make their own programming
interface (called DFHack) for
other modders to use. That's a
huge amount of work. It's no
wonder Stonesense only
recently got to the point where
you could really play with it.

“...it's not quite

so easy to get

the player to

accept any

breaks with

reality, because

it's such a

familiar reality.”

13

By Zachary Spector

@LogicalDash | https://cybre.space/@LogicalDash

https://cybre.space/@LogicalDash

14

I think it's a shame that Dwarf
Fortress is so inaccessible to
both players and modders. I
want there to be more games
like it, but I understand why
there aren't; its development
consumes Toady One's whole
life, even with all the help from
modders and players. Toady
doesn't want to release the
game's source code, even though

the modders know all about its
inner workings; and doesn't
want to make an official
programming interface, because
that's a lot of work. So the
game's mod scene proceeds in
this haphazard way, with so
much wasted effort, to make the
game marginally playable for

newcomers. It's not very
surprising that there aren't
many games like this!

Maybe if it were easier to mod
similar games, there would be
more of them. So I'll make that
happen. The Life Simulator
Engine, abbreviated "LiSE" and
pronounced "lies," is not a game
engine in the traditional sense. It
does not have any graphical
interface, although I am building
such an interface for it;
LiSE itself is a rules engine,
which keeps snippets of code
describing things that can
happen and conditions they
should happen in, and applies
them to a world model based on
directed graphs.

You can simulate a world in this
engine, and modders can use the
same programming interface
you did, even if you don't want
to release your code; LiSE can
run as a web server, and
modders can build frontends for
its RESTful web interface. But if
you do release your code, the
composable nature of the rules
means that they will work in
some capacity without alteration
in any other game made in LiSE.

Image of ELiDE,

the graphical

frontend

I anticipate that casual
developers will make cool
stuff by playing "mod tennis,"
adding a rule and emailing the
game to a friend who does the
same and sends it back. Like
Photoshop tennis for proc gen.
Maybe, someday, there'll be
enough games in the engine
that you can make a new one
by reusing rules from old
ones, and not write any new
code at all. The interface for
the world model is based on
that of the NetworkX graph
library, which has lots of
functions to generate and
mutate graphs in ways that I
don't understand. I've strung
them together into a little
syntax based on method
chaining that seems like it
could be fun to play around
with, but I've only used it to
make some grid-shaped
graphs and some boringly
chaotic ones. The project
would benefit greatly from
people doing random wacky
stuff with it and giving
feedback. The documentation
is lacking at the moment, and
I'm putting off writing it until I
finish an overhaul that

allows the engine to pause in
the middle of a turn, a feature
that I only realized was
important when I tried to
build a system to make the
frontend present menus to the
player.

LiSE does not use save files in
the traditional sense. Every
change to the world gets
journaled to a database,
currently SQLite, though
support for other databases is
planned. This allows
developers to see everything a
player ever did, and every
change that was ever made to
the world, and to rewind and
replay all that in the graphical
development kit. This will aid
in debugging, and may
provide for some new
gameplay mechanics too -- the
player can travel through time
easily, if you want to let them.
Eventually you'll be able to
query the past, to answer
questions like "When were
you last here?" and "How
many times have you eaten
spaghetti?" without having to
write any special code to track
those things aforethought.

“The project

would benefit

greatly from

people doing

random wacky

stuff with it and

giving feedback.”

15

Check out the LiSE
GitHub repository:
https://github.com
/LogicalDash/LiSE

If you're
interested in LiSE,

please consider
filling out this

survey:
https://goo.gl/7N1

TBj

https://github.com/LogicalDash/LiSE
https://github.com/LogicalDash/LiSE
https://goo.gl/7N1TBj
https://goo.gl/7N1TBj

“It pulled

quotes and

color palettes

from the

internet,

generated

random motifs,

and made

weird little art

pieces.”

16

By Gillian Smith

www.sokath.com | @gillianmsmith

At the first procjam in 2014, I gave a talk titled “make something that
makes something that isn’t a game”. I talked about games, but I also
talked about why we could think more broadly about generative
design outside of games. About what the future of PCG could be, and
why that future is exciting, and what we need to be looking at to get
there. I tried to argue for thinking about interfaces to PCG, and
making tangible things, and making better design tools, and caring
about people. Honestly, I was getting pretty burned out on games
when I gave that talk.

I wasn’t planning to make anything for procjam, but when I flew
back home from Europe, I figured I’d follow my own advice, and
used up my laptop’s battery life trying to make something that makes
something that isn’t a game. And then I got home and stayed up way
too late at night, feeling this urge to create. I hadn’t felt that feeling
in years.

The project was a cross-stitch sampler generator called Hoopla. It
pulled quotes and color palettes from the internet, generated
random motifs, and made weird little art pieces. The best of its
output looked like 19th century glitch art and the worst looked like a
child’s attempt at using MS Paint for the first time.

When procjam ended, I threw what I had up on itch.io, and thought I
was done. But suddenly, during my downtime and especially when I
traveled, I would pull out Hoopla and add new features until my
battery went dead. And then, I began integrating what I was learning
about generative textiles into my research – designing games that
use crafting as an interface, treating gameplay as a generative
system, and attempting to diversify games through craft.

Working on Hoopla here and there became a reflective practice for
me – an escape from what I “needed” to work on that gave me a safe,

http://www.sokath.com

17

isolated space to explore new ideas. I wouldn’t be where I am
today without that little procjam project, sitting on the side,
waiting for me to come and poke at it a little bit more, whenever I
was ready. For a long time I didn’t even think about completing
it. I didn’t think of working on it as making “progress”. It was
more about the slow process of creation, experimentation, and
reflection.

This year, I decided I’d learned all I could from the digital
experimentation. Every night in January, after my son had gone
to bed, I parked myself on the couch and took out an embroidery
hoop. My thoughts drifted as I engaged in the repetitive activity of
stitching generated motifs. Stitch by stitch, pixel by pixel, I made
my favorite designs from Hoopla live in the real world. I came to
think of it as following a slow, reflective, and interpretive
rendering process. Every decision I made in my code was slowly
reflected, by hand, on a small piece of cloth that I stitched one
square millimeter at a time. Every error I made in my stitching
had to be either painstakingly undone, or left there forever.

When I finished my stitching, I literally shipped Hoopla: wrapped
in bubblewrap, in an old Amazon box, it traveled across the
ocean from my home in Massachusetts to an art gallery in Dublin.
It was shipped back to me at the end of the summer, at the close
of the exhibition: my permanent reminder of a beloved piece of
software that had in the meantime already fallen to bitrot.

I was looking at some
badlands recently. Not the
famous South Dakota geologic
formation, but a similar,
smaller scale version of the
same phenomenon, where the
erosion has stripped away the
soil and left very little for
vegetation to cling to.
Badlands leave bare the
effects of erosion, making it
easy to trace the paths that
water and wind have carved
out of the rock. The history of
process is made visible.

Unlike pristine computer
renders, real-world objects are
imperfect, and part of those
imperfections are the marks
left by object's history.
Model-makers often go out of
their way to add weathering.
The history of the object is
recorded in its scuffs and
stains.

Some generative techniques
don't leave a history. Perlin
noise, for example. But more
simulationistic processes
sometimes do create an actual
history for an object. The early
artificial-life experiment
Sugarscape used agents to
simulate a history. Dwarf
Fortress simulates an entire
world's history to give context
to its generation.

You don't need to actually
simulate the history, of course.
You can fake it: you can think
of Caves of Qud's invented
history as being like a
model-maker's weathering.
Most weathering techniques
use fast physical processes to
fake a lengthy history.
Texturing techniques use
mathematical cheats to do the
same.

“You can fake it:

you can think of

Caves of Qud's

invented history

as being like a

model-maker's

weathering.”

18

By Isaac Karth

@isaackarth.com | @proc_gen | procedural-generation.tumblr.com

19

History is useful for more than
just textures and terrain:
many generated things can
benefit from having the
additional context from a past
history. Character backstories
are another obvious one. How
a building has been used in
the past affects its shape in the
present: one perspective on
this can be found in How
Buildings Learn by Stewart
Brand.

Once you have a history,
consider using it as part of the
presentation. Tell the user
about it. This could be literal,
such as the way Dwarf
Fortress attaches little
histories to the artwork on
objects. Or it could be more
abstract: perhaps pottery
made in different towns use
different subsets of the
descriptive tags, and we can
use the information about
where and when it was made
to add flavor and imply a past.

You can use it directly, by
telling the player the lore, or
find ways to do it indirectly.
Environmental storytelling

depends on giving the player a
sense of past events solely
through the present
configuration of physical
objects. If we have a history,
we can use it to more
effectively procedurally
generate environmental
storytelling.

Or, you can feed the history
into other generative systems.
Consider a system that
generates legendary medieval
weapons, with associated
histories. The history of the
object can be used to influence
the visual appearance of the
model: this owner carved
runes in the blade, that owner
wrapped the hilt in red
leather, this chip is from when
it was used to slay the dragon.

There are a lot of applications
to invoking history in our
generative processes, tying
our generated artifacts into a
past and a context. Literal and
figurative weathering is useful
for all kinds of generation,
whether you fake it or
simulate it.

“This slow

process allows

for a mapping

of elements of

the file to

elements

shown on

screen.”

20

By Joseph Alexander Brown, Bulat Lutfullin, and Pavel Oreshin

@jb03hf

Hotline Miami is a series of 80s themed arcade shoot-em-up
games. In early 2016, a beta level editor was provided for the
second release in the series Hotline Miami 2: Wrong Number.
In an effort to apply PCG elements, in this case levels, to a
working commercial game, see [1], we needed to examine
how the game stores levels. Unfortunately, while the level
editor exists and humans can create new and interesting
levels for it, PCG elements work in the level of the file, which
are not human readable and which has no explicit mapping
of the file to in game objects. In order to determine how to
edit these files as process of reverse engineering was used in
which known levels were first created by a human and
correlated to the results seen in the files. This slow process
allows for a mapping of elements of the file to elements
shown on screen.

21

To understand file structure, we created empty level and
made small changes to see the difference in files. The
Hotline Miami 2 level is described by a set of six plain text
files:

Level.hlm

Contains meta information of file such as level name,
author name, size of the level, music id that will be played
during game, etc.

Level.ver

Contains only one number - version of the Hotline Miami
level editor.

Level.obj

Holds information about player character, player’s car,
doors, enemies and decorations. Each entity is described
by its ID, coordinates (x, y), sprite ID, and rotation in
degrees. Also, different types of objects have unique
attributes like behaviour type for enemies AI (static, patrol,
idle).

Level.tls

Holds informations about floor tiles like coordinates and
sprite ID. Each tile is a square of size 16x16 px.

22

Level.wll

Contains description of wall segments. Each wall is assumed
to be 2 tiles or 32px wide.

Level.play

This file is used in game mode as the final storage and
contains all the information described in previous files. Level
editor works without this file and is compiled when a save is
made in the level in the editor.

Level editors such as those provided for Hotline Miami have
been seen to have value for the developers, they provide
extensions to the life of games and communities for players to
trade, build, and play. We would encourage developers to not
only provide editors which are usable by humans, but that
allow for PCG developed levels to be implemented without the
need for deciphering the files used for the game.

23

This could be accomplished by either using a format for the
files which is human readable or giving a clear definition of
how a level is stored, and by a listing of the available elements
used in the game mapped to their unique id.

Future work is to continue our examination of the file
structure to allow for the placement of objects and enemies.

References
[1] Joseph Alexander Brown, Bulat Lutfullin, and Pavel
Oreshin. “Procedural Content Generation of Level Layouts for
Hotline Miami”. 9th Computer Science & Electronic
Engineering Conference, to appear, 2017. Preprint at:
http://tinyurl.com/Seeds2-Hotline.

http://tinyurl.com/Seeds2-Hotline

It is probably due to my
details obsessed behavior, but
every time I need to create a
new world, I get lost into
pages of physical and orbital
calculations to find its most
fitting calendar. In fact, I find
it unbearable when distant
planets or exotic fantasy
worlds have a bland
12-months calendar. In the
name of the Ancient Gods,
how can a world with 5 suns
and 17 moons have a year
made of 12 months of 30 days?
How do you define a “year”
when you have 5 suns? What
is even a “day” in that
situation! On which satellite is
based the lunar month that
“casually” divide so perfectly
your year in 12 intervals?

These and many other are the
questions I ask myself every
time I forge a new world for
my adventures. They seem
useless picky questions or
worthless details, but I
strongly disagree. Calendars,
seasons and astronomical
events can shape entire

cultures and are the most
primordial shaping forces to
which a species is subjected in
its early years. It is a shame
that we always use the same
earth-like paradigm. We are
limiting ourselves with just
one of the possible outcomes.

Fortunately, when I write
some short novel in my spare
time or I design a D&D
adventure, this is not a big
deal. After all, once I
world-built my setting once, I
can spend years writing
stories in there. So, this is a
task I just need to do once in a
while.

But when I move to game
development and procedural
content generation, I face the
same problem multiple times
per day. Now the task of
designing a physically
accurate calendar must be
done every time the player
clicks on “generate new
world”. I don’t want to limit
myself to the earth-like
calendar again and,

“It is a shame

that we always

use the same

earth-like

paradigm. We are

limiting

ourselves with

just one of the

possible

outcomes.”

24

By Davide Aversa

@thek3nger

25

surprisingly, there are very
few games with such deep
calendar generation. That’s
why I wrote a software
helping me with this task.

In general, civilizations
calendars are complex
creatures. Without entering in
many details, their generation
can be seen as composed by
two main blocks: the Celestial
Mechanic Block and the
Cultural Block.

I will not go over the Cultural
Block for now. This is the step
where we define names for
seasons, months, days of the
week and even the concept of
“week” itself. It is an
important step but not the
step I am interested in. In fact,
it depends on so many
cultural and historical aspects
that is almost impossible to
design a general purpose
procedural algorithm for it.
Especially one that is
independent from the actual
setting of the game.

The interesting part is in the
Celestial Mechanic Block. This
part is concerned with the

computation of the
astronomical variables that
are relevant to a calendar.
That is, given some basic input
data about the planet –such as
planet distance from the sun,
the number of satellites, the
mass of the sun, and so on– we
compute values such how long
the planet takes to complete
one orbit, the duration of each
season (if there are any), the
duration of a day, lunar
phases, how to handle leap
years, and more.

These values are the building
blocks for each calendar and,
most important, they are
independent from the
population culture/language.
They only depend on the
eternal dance of celestial
bodies around the space.

Even if this seems simple as
applying a bunch of
astronomic formulas, there
are still a lot of unanswered
questions. When we move
away from the standard
sun-earth-moon scenario,
things start to get very messy.
In a binary star system, the
duration of a solar day may

“In general,

civilizations

calendars are

complex

creatures.”

become irregular, seasons
may assume complete
different meanings, they may
be more than 4, or none at all.

Even when we have our
standard sun-earth-moon
scenario, things may be
harder and interesting to
explore. For instance, if the
planet revolution is very long
(e.g., an 80-months-long year)
it is unlikely that the “year”
will be the center of the
calendar. Season may be a
better fit in this case. Imagine
the stories for a planet in
which winters and summers
last long for years (our earth
years).

I love this kind of questions
and that’s why I am investing
some of my time into this
procedural calendar
generation. An early version
of my attempt to grow
calendars and astronomical
events from orbital parameter
can be found here.

I love this kind of questions
and that’s why I am investing
some of my time into this
procedural calendar
generation. An early version
of my attempt to grow
calendars and astronomical
events from orbital parameter
can be found here. For now, it
works for earth-like planets
and there is no fancy stuff.

But I encourage you to visit
my repository
(https://github.com/THeK3nger
/calendar-generator) and
discuss many of these
fascinating questions!

26

https://github.com/THeK3nger/calendar-generator
https://github.com/THeK3nger/calendar-generator

27

By Heather Robertson

@HTHRFLWRS | heather.flowers

A set of images,
titled The Building
Is Alive, from my
new game Secret

Spaces.

28

You can find the
game Secret
Spaces here:

https://hthr.itch.i
o/secret-spaces

https://hthr.itch.io/secret-spaces
https://hthr.itch.io/secret-spaces

29

Most people know Turing for his work in AI, codebreaking, or for
Turing machines, but, as if he didn't contribute to academic
imposter syndrome enough, he also produced seminal work in
theoretical biology, with a single paper, entitled "On the chemical
basis of morphogenesis". Morphogenesis is the biological process
of how organisms grow into their specific shape.
Turing's contribution to this was a reaction-diffusion model of
morphogenesis, describing the diffusion of two different
chemicals, one activating growth and one deactivating it, decades
before such a thing was actually observed.

When you hear the idea of a mathematical model of
morphogenesis you may be lead to the idea of simulating such a
system to grow a creature or a plant, but unfortunately this
would require a significant leap in our current understanding.
Morphogenesis’ immediate interest to procedural generation is
instead in some of the patterns it can produce, including different
types of stripes, spots, spirals, and hexagons. These 'Turing
patterns' can bare a striking resemblance to patterns found in
nature and can look quite organic; one of the parallels of most
obvious interest to procedural generation being the similarities to
animal skins, such as leopard skin, the spots on giraffes, and
zebra fish.

By Elle Sullivan

@THISISDINOSAUR

The discretized

version of the

Gray-Scott model

for the simulator

30

It is possible to construct a simulation of such a theoretical
chemical reaction (a 'reaction-diffusion' system, where local
chemical reactions are transformed into each other, and diffusion
causes them to spread out). This can be done on a grid (ideal if
we're going to be producing pixel images from this), where the
concentration of each chemical for a particular square is given by
a partial differential equation, with a diffusion term simulating
chemicals moving into and out of the square into neighbouring
ones, and a reaction term representing the chemicals reacting to
each other. A Turing pattern occurs when a homogeneous
solution that is stable without diffusion becomes unstable in the
presence of diffusion (i.e. if when the concentration of each
chemical is the same across the entire grid the concentrations
don't change if there is no diffusion, but if you add back diffusion,
and make a very slight change to the chemical concentration
somewhere, a Turing pattern will appear).

On top, the

Gray-Scott model.

On the bottom, the

final equation that

tells us when Turing

patterns occur.

Contact me on
twitter if you

would like further
details of the

mathematics. If
you find the

maths
intimidating,

don’t worry, it
could be a lot

worse.

31

Some unpleasant maths later will tell us what combinations of
parameters and starting chemical concentrations will give us a
Turing pattern if we colour each square based on the
concentration of one of the chemicals (in this example, orange
where u = 0, moving to white when u = 1). Plugging these into the
simulator now gives us a wide variety of interesting patterns.

One nice thing about this method of generation is that it works
with a large number of different reaction-diffusion models. I use
the Gray-Scott model here because it is relatively simple, the
maths looks significantly less intimidating than some other
models, and, despite this relative simplicity, displays a wide
variety of interesting behaviour. I have also performed it with the
Oregonator model, which models the Belousov–Zhabotinsky (or
BZ) reaction, a nonlinear chemical oscillator, which can also have
a wide range of exciting behaviour, such as propagating waves
and spirals (and gets bonus points for being a real world reaction
you can see). The mathematical procedure to find a Turing
pattern and simulate it on a grid is the same for this or any
reaction diffusion model, but the final equation that specifies the
required parameters in this case is much more unpleasant
looking.

The equivalent

for the

Oregonator. See,

I told you it

could be worse.

32

Both of these images were produced using
the same parameter values (k = 0.047, f =

0.04) and show how you can change the scale
by changing the diffusion constants.

A Turing pattern

in the Gray-Scott

model.

A B

A B

A different Turing pattern with different
parameters (k = 0.04, f = 0.04) in the

Gray-Scott model, at the same two sets of
diffusion constants.

A different Turing

pattern in the

Gray-Scott model.

33

Whilst this can produce a wide variety of surprisingly naturalistic
patterns, one downside of this is the difficulty in predicting what
set of parameters will give what pattern, making directed
generation much more difficult, but at least the overall scale, and
the colouration is controllable. All manner of different
reaction-diffusion models could be used, and it can even be
performed 3- dimensionally (so you could even perform the
simulation across a 3D elephant shaped grid and could then
extract a texture, removing the issue of lining up the texture with
a uv map), although the real strength is being able to generate a
wide variety of naturalistic patterns with very little effort.

A comparison of

zebrafish and a

Turing pattern.

Taken from

Advanced

Reaction-Diffusion

Models for Texture

Synthesis ,

Sanderson et al.,

2006.

“That makes

them ideal

explorers of

quasi-infinite

spaces, which

are usually

forbidden to

us.”

34

By Marcos Donnantuoni

@marcos_don | https://marcosd.itch.io

I love working with computers; not so much because of their
abilities, as speed or memory (which are certainly useful), but
because of two main disabilities: they cannot be frustrated or bored.
That makes them ideal explorers of quasi-infinite spaces, which are
usually forbidden to us. They can attempt for hours or days to
construct objects that satisfy completely arbitrary criteria, and will
not complain when that treasure they just discovered buried under
billions of candidates is rejected by an aesthetic whim, or we change
a line of code and send them again in a deep search perhaps
destined to fail.

But this lack of boredom or frustration is also dangerous, especially
during the procedural generation of levels for puzzle games, which
should not bore players with too easy levels nor frustrate them with
too difficult ones (at least not too soon). How can computers, so
oblivious to these dangers, avoid them?

Short answer: they cannot. But there are longer answers. An obvious
one is to sort the puzzles by difficulty before presenting them to the
player; this way, a player's progress in their "easy" zone will be quick
and perceived almost as a tutorial, and the most difficult and
transcendent puzzles will appear only when the player has "earned
the right" to play them, after beating the intermediate ones.

Of course, this method has two problematic aspects. On the one
hand, the very ordering criterion is necessarily arbitrary, and could
work only for a subset of players (those more psychologically similar
to the game designer/programmer); on the other hand, the
classification of puzzles usually takes much longer than their
generation, and may be too demanding for smooth gameplay in
low-end computers or mobile devices.

The first problem is almost inevitable: different kinds of games are

https://marcosd.itch.io

35

enjoyed by different groups of people; we can embrace that
without fear.

The second problem can be solved with a little cheating, by
pre-generating and sorting the puzzles, and packaging them in
the game (fortunately, they take up much less space than other
assets, like textures or 3D models).

I use this method in the game I'm currently developing
(codename "Pontibus"; I may present a work-in-progress version
during ProcJam 2017), and it has yielded quite acceptable results.

In Pontibus the puzzles are combinatorial: players operate on
certain objects until they arrive at certain winning configuration.
This allows for two difficulty metrics: the puzzle's visual size and
shape, which affect player expectation of its difficulty before
solving it, and the puzzle's state-space vastness, which
presumably reflects its real difficulty (this assumption is very
debatable, but simple enough).

The first metric is easy to implement: it's basically a linear
function of the quantity and size of moving elements of the
puzzle.
The second metric is more laborious; it involves generating the
entire "move tree" (or a sizeable part of it) and measuring its
depth and frondiness (branching factor). If the proportion of
winning configurations is high, the puzzle will score less at
difficulty; similarly if the length of solutions is short.

This core technique can certainly be decorated with all manner of
additional criteria, specific to each puzzle rule or set of rules; but
it's surprisingly powerful as it is.

Hi Procjammers, I built
www.QuantumPilot.me,
where player input seeds the
enemy AI's moving &
shooting. No, the AI doesn't
"learn" from the player nor
does it compute a good
defense against their playstyle
a la Warning Forever [1], the
AI simply copies your inputs
and mirrors them back at you.
The emergent result is
fantastically unique levels for
each individual player & play
session.

First I'll talk about the seed for
this game and why it
resonated with me. Next, the
emergent gameplay benefits.
Thirdly, challenges & quirks.
Lastly, a brainstorm &
challenge for you to use this in
your own games.

SEED
I played ABA's [2] DefeatMe!
about 8 years ago. Simple
move and shoot with clones of
you. I loved the concept but
the implementation bugged
me. The levels always

repeated when you died -
making getting stuck likely.
Weapon spread and ship
movement speed were
procedurally generated (by
modding the level #). This
made for unpredictable
gameplay as did the enemy
ships warping back to the start
when they finished their path.
Lastly, the Deadline (A wall of
bullets acting as a timer for
the level) moved way too fast
for comfort - little time to
prepare or react. I fixed these
design flaws in Quantum Pilot
for a smoother experience.

EMERGENT GAMEPLAY
Most shoot-em-ups and "bullet
hell" games feature geometric
bullet patterns and the precise
timing to weave between
them as their core gameplay,
with shooting mostly an
afterthought. Quantum Pilot
features The core dynamic
gameplay & difficulty between
the 2 skills of shooting &
dodging.

“The emergent

result is

fantastically

unique levels for

each individual

player & play

session.”

36

By Quantum Potato

@quantumpotato

http://www.quantumpilot.me

37

If you shoot many times, your
current level gets easier
because there are more
hitboxes for enemies to hit.
Subsequent levels get
immensely tougher by
demanding better dodging. To
make dodging easier you must
shoot very accurately. This
makes the clones shoot less
and it's easier to skirt their
bullets.

Shooting accurately is very
tough and there's a risk
mechanic: The longer you go
without shooting looking for a
clean shot & then you miss -
you must act quickly to
survive! This usually means
reverting from "Shoot
Accurately" to "Spray and
Pray" - switching the skill
requirement next rounds
from easy dodging to hard
dodging.

QUIRKS
Originally I had the player
ship & enemy ship in
Quantum Pilot start lined up
evenly just like in Defeat Me.
This led to what I call "the
memorization problem" - the
answer to a level becomes a

 puzzle where the player can
learn & memorize the correct
inputs instead of relying on
good tactics. This isn't what I
intended so I started
randomizing the Clone
starting positions. I also kept
the player's X position the
same between each level and
when restarting the game --
there is no transition and
from this seamlessness
players often keep playing
from the immersion.

The Y position of the Clones &
the Player is reset each round,
and that's only to protect the
player from being too close to
the enemy on the next level
and being instantly killed, or
from shooting earlier than the
Clones are and killing them
too easily. Shooting earlier &
earlier each successive round
is a great strategy - a little too
good and deemphasized
tactical movement. I
confronted this by having the
Deadline speed up if you
aren't shooting. This puts the
pressure on the player!

I experimented with
horizontal screen wrap (with

“This isn't what I

intended so I

started

randomizing the

Clone starting

positions.”

bullet + player ship
projections so you can see
where you're going). Most
players liked this - it "looks
cool" and it feels good to run
away. But this literal lack of
center destroyed the dodging
gameplay - you could always
just flee to one side, never
worrying about being trapped.
I removed this and put in a
solid line for the border which
visually frames the game
much better and make
choosing to weave into a
bullet pattern a more
interesting tactical decision.

FUTURE
Quantum Pilot is a simple
exercise in replaying player
input. You could do more -
world generation based on
what the player moves
towards. Actual computation
for bullet patterns that hit the
player's movement patterns.
Physics puzzles generated to
deny the same quirks
exploited previous rounds. A
text-adventure where your
clones help you. A 1v1 squad
FPS where each team gets an
AI with the movement copied
from their opponent. What
can you do?

SECRETS
I encourage you to make
learning to play masterfully
the most satisfying secret in
your game. When you are
smiling from gameplay,
commit your code.

REFERENCES
[1]
https://archive.org/details/War
ningForever
[2]
https://en.wikipedia.org/wiki/
ABA_Games

38

https://archive.org/details/WarningForever
https://archive.org/details/WarningForever
https://en.wikipedia.org/wiki/ABA_Games
https://en.wikipedia.org/wiki/ABA_Games

39

Procedural Generation algorithms often seem like magic. With a
small uninteresting seed (a long number, some options in a start
menu, the current time in milliseconds) this arcane set of
instructions hidden behind layers of code can generate whole
worlds, full of landscape, characters, music, and life. The
algorithm takes something mundane and makes something
interesting out of it. But what if you start from a seed that’s
already worth looking at?

Much of my recent work has tried to explore this question,
generating music out of natural phenomena which in the first
place rivals the artistic quality of what’s produced. Rather than
using a simple number to start, they use entities such as the
present weather conditions or an artfully framed photograph
taken by the user. The idea is not that a “better” seed might
produce somehow better output, but that the algorithmic process
of PCG might be able to allow for greater artistic appreciation of
the seed itself.

By Ethan Edwards

@winterblooms | www.ethanedwards.org

http://www.ethanedwards.org

40

Fox example, an iOS app I developed called Edge of the Sphere
directly accesses the user’s camera and displays back a live
version of whatever they are seeing run through an edge
detector. Suddenly the world of so many shapes and colors is
reduced down to an abstracted monochrome of lines intersecting
at various angles, only the outlines of the objects at hand. When
the user taps the screen as in any normal photography app, these
lines light up and produce synthesized sounds of many different
pitches and durations. After using the app for a little while, the
user beings to understand some parts of how it’s done. Right
angles produce pleasant sounding harmonies, grids (bookshelves,
bricks) easily picked up by the camera produce many sounds.
From here, one explores the possibility space through framing
and the shapes of objects.

Ultimately the music is nothing groundbreaking. It is easy to
produce, and played in a concert hall would sound like random
noise. But what I hope to have done is create a direct association
between the visuals and the sound which helps increase the
appreciation for that original seed. My ideal case for this is that
after playing around for a few minutes, the user will look around
their so familiar room and begin to notice the angles and lines
which have faced them for years but have gone unnoticed. Maybe
on their walk to work the next day they’ll spot a particularly
shapely sewer grate or find a new angle to look at a bridge. The
sounds are fun and interactive, but in the end they serve as bait
back into the seed that generated them. The music must be just
interesting enough that people keep thinking about the system
and try to figure out how the generation works. Once they learn
to use the lines to generate music, they better appreciate the
geometry of our world which was already present.

The precise details of the algorithm really don’t matter, only that
the relationship between the input and output is understandable
by humans. Angles determine the pitches and certain

“Suddenly the world

of so many shapes

and colors is

reduced down to an

abstracted

monochrome of

lines intersecting at

various angles, only

the outlines of the

objects at hand.”

41

geometrically nice angles generate pleasant sounds under the
standard Western harmonic system. But any mapping would
have worked, as long as the user can figure out for themselves
that certain kinds of patterns, lengths, photographic framing, etc.,
can predictably produce results based off of those criteria. If
similar seeds produce wildly different results, there is no real
point to thinking about the seed and one might as well use a
random number generator. The algorithm in this case is fully at
the service of the input.

By no means am I the first or best do this sort of work. As
algorithmic art has propagated, the desire for complex inputs has
been satisfied many times. The artist Hannah Davis has created a
system called TransProse which takes in texts such as novels or
speeches and using sentiment analysis creates pieces of music,
with the resulting pieces providing aural information about the
source material. The idea of an output which sheds light on the
source material is the very premise of data visualization, and
hopefully as more artists approach this field we can get more
exciting analysis of more mundane sources.

The world contains beauty all around us, but under our current
living conditions, we miss so much of it. We scarcely notice the
beauty of birdsong, the perfect geometry of cities, or the pleasure
of a windy fall day in just the right light. Art can help rectify this
situation by changing our perspective and preparing us to go out
into the world and notice these things. As technology provides
more and more tools for engaging people interactively and using
data from our environment, endless possibilities emerge and it is
up to artists to go out and find them.

“The world

contains beauty

all around us,

but under our

current living

conditions, we

miss so much of

it.”

42

By Rick Hoppmann

@tinyruin | www.tinyworlds.org

Read how I made a program generating fairy tales.

"Before you were born there lived an intelligent musician. One
day the musician was abducted by a barbarian. She tricked the
barbarian. Then the musician fled in terror."

GENERATING THE PLOT

Studying the fairy tales of Brothers Grimm, I realized that a group of
them worked after a similar structure.

You had one main hero, an evil opponent and a central conflict
between them two. The story ends with a solution of the problem
and sometimes also in a catastrophe.

I started to go trough stories to gather ideas for common conflicts.

http://www.tinyworlds.org

43

1. the evil actor kidnaps the hero or someone close to him

2. the evil actor bewitches the hero

3. the evil actor destroys a belonging of the hero

In order to generate the rest of the plot I now searched for a way
to include the solution of the central conflict. The graph below
illustrates how the plots are generated.

In this example the evil opponent destroys something of the hero.
Then the hero tricks him. In the end the hero kills the evil
opponent.

44

Now I had the core part of the programm done. The programm now
knew how to generate plots for fairy tales. The next step was to teach
it how to turn this plot into sentences and add some unique details to
it.

TELLING THE STORY

At first I created sentence structures the program could choose out
of. Some parts of the sentences are variable. They get a random word
or wordgroup assigned out of a list. For example the destroy part is
generated like this:

"There came a night" "a rascal" "demolished" "the hut" "of the
archer."

Now the programm could also have choosen other words out of the
list, making it turn into this:

"One day" "a rascal" "ruined" "the garden" "of the archer."

As you may have noticed, the hero and the evil opponent stay the
same troughout the story.

45

The program decides at the beginning how to describe them both.
Maybe the hero is a tiny mouse fighting an evil knight or the hero
is a powerful mage fighting a strong barbarian.

With the sentence structures and the word lists added, the
programm now knew how to narrate it's own fairy tales.

TRY IT YOURSELF
Download: www.bit.ly/plotnarrator (Windows, Linux) The source
code is available under MIT license on github
(https://github.com/tinyworlds/PlotNarrator).

The Monster Deep in the
woods there lived a
wealthy hero. One day the
hero was entranced by a
monster.
The hero fooled the
monster.
The monster ended the
enchantment of the hero.
Thereupon she fled.

The Fighter In a tiny cave
there lived a tiny rat.
One day the rat was carried
off by a fighter.
The rat fooled the fighter.
After that she chained the
fighter.

http://www.bit.ly/plotnarrator
https://github.com/tinyworlds/PlotNarrator

46

By Munir Makhmutov and Andrei Gusev

This work is dedicated to content generation problems in augmented
reality games on mobile devices. Recently, the problems associated
with Pokemon Go playing in unintended places have been widely
publicized. In fact, there are a lot places where game content should
not be generated because of ethical, religious and other reasons. This
work shows a possible solution to the problem of game content
generation in unauthorized places using a simple game example. To
achieve this goal, it was decided to develop an algorithm which can
check the whether generated content will be placed in prohibited
locations. The results show that the algorithm works with most
places, using clearly defined names of buildings taken from the
Google Places API. This algorithm can be used in games with
augmented reality based on location of players and any other
applications working with objects on maps.

Augmented reality games are not new today. But even most popular
augmented reality games based on maps like Pokemon Go do not
provide the possibility to exclude prohibited locations such as
churches, prisons, private ownership, etc. Therefore, game content
(Pokemon in case of Pokemon Go) can be generated in and around
prohibited areas. And due to this some of the players can be arrested
for playing in these places. Other countries can just block such
games on their territories entirely [1]. Initially, an analysis was
conducted during which a list of the most unsuitable places for
games was obtained. The list of forbidden locations is shown down
below:

● Unclassified military installations
● Railroad tracks, stations and platforms
● Temples, mosques, synagogues and other religious places
● On the territories of state power objects
● In the cemeteries
● Hospitals
● Police stations

“This work

shows a

possible

solution to the

problem of

game content

generation in

unauthorized

places using a

simple game

example.”

47

● Prisons
● On the border of the state
● Museums
● Airports and take-off stripes
● Water, erupting volcanoes and other dangerous places

Each of these places refers either to the private or state segment,
or to places of spiritual value, playing in which can offend
someone’s feelings or rights. Generation of game content in water
and volcanoes can endanger lives. A well-known story in the
Washington Post [2], related to the Pokemon Go and The US
Holocaust Memorial Museum shows importance of this study.
”It’s unacceptable to play Pokemon Go in a museum that is a
memorial to the victims of Nazism,” Andrew Hollinger, director
of public affairs at the Holocaust museum, told CNN. After this
incident, Niantic had to act and exclude some of museums from
possible places of Pokemon appearance. But the problem did not
disappear and the game remains blocked in some countries. And,
of course, it is impossible to manually exclude all prohibited
places. And to solve this problem, it was decided to create an
algorithm that automates the exclusion of unwanted places. The
list of forbidden locations was created for the most general cases,
and it can be expanded in future. Some countries can have its
own unique forbidden places.

A list of place types can be sent to the Google Places API to get all
places of these types in a city or in radius from a particular place.
But the problem is that Google returns only the information
about the coordinates of a place, and even this is not necessarily
the center of the object. Without place size, it is difficult to verify
whether something is within a location or not. To solve this
problem, OpenStreetMap API was used because it provides more
detailed information about object location based on its name or
coordinates. The query returns a set of points consisting of

“And to solve

this problem, it

was decided to

create an

algorithm that

automates the

exclusion of

unwanted

places.”

48

latitude and longitude forming a complete outline of the area or
building. These points form a polygon, belonging to which we should
check. So the generation algorithm should find all prohibited areas
using request to Google Places API, then a request containing these
coordinates should be sent to OpenStreetMap API to get polygons.
Based on these prohibited polygons and the alleged place of game
content it should be decided if it possible to generate it or not.
Generally, it does not matter which algorithm is used for game
content generation. In case of our game the most important input
data for algorithm is the set of players’ locations. It is needed to
generate content close enough to players. Figure 1 demonstrates
generation of the content for Player A and Player B between which
airport (prohibited area). If it is needed to generate one item for both
of them, then a naieve solution would suggest the game content
should be generated somewhere between them (Position 1), because
it will be close enough to each other. However, this should not be
done. Therefore, the algorithm should choose another position
somewhere nearby, which could be Position 2 (depending on the
implementation of the game).

References

[1] S. Mans, ”Who owns the playground?: Urban gamification and spatial politics in Pokemon
GO,” 2016. [Online]. Available: http://tinyurl.com/playwho
[2] A. Peterson, ”Holocaust museum to visitors: Please stop catching Pokemon here,” 12 July
2016. [Online]. Available: http://tinyurl.com/washpokego

“Figure 1.

Game content

generation

near to

prohibited

area”

http://tinyurl.com/playwho
http://tinyurl.com/washpokego

49

By Davide Prati

@edapx

I did a Palm generator a
while ago and I think it
could be interesting for
you. You can find all the

information here.
http://davideprati.com/p
rojects/palm-generator

A zip with high res
images can be

downloaded here
https://drive.google.com
/file/d/0B6sqjMvJRGMtU
0FGQndCcUd6cUk/view

http://davideprati.com/projects/palm-generator
http://davideprati.com/projects/palm-generator
https://drive.google.com/file/d/0B6sqjMvJRGMtU0FGQndCcUd6cUk/view
https://drive.google.com/file/d/0B6sqjMvJRGMtU0FGQndCcUd6cUk/view
https://drive.google.com/file/d/0B6sqjMvJRGMtU0FGQndCcUd6cUk/view

50

A poster with some
palms it is available

here
http://davideprati.com/
assets/media/palm-gene
rator/palm-generator-po

ster.png

http://davideprati.com/assets/media/palm-generator/palm-generator-poster.png
http://davideprati.com/assets/media/palm-generator/palm-generator-poster.png
http://davideprati.com/assets/media/palm-generator/palm-generator-poster.png
http://davideprati.com/assets/media/palm-generator/palm-generator-poster.png

FIRKANT is a fast-paced,
procedural platformer set in a
minimalistic, but expressive
environment in which the
player races against the decay
of platforms to get the highest
possible score. It’s been in and
out of development for
Android & iOS since late 2015.
Its key influences are Super
Meat Boy and Cloudberry
Kingdom.

Gameplay
The player controls a white
square, which can be
customized further to the
player’s liking, they can even
draw their own sprite, to
navigate endlessly through a
procedurally generated set of
platforms. Each platform has
a limited lifespan, and will
begin to fade out once it has
spawned. The next platform
will spawn when the player
has collected a ‘Generator’
item present on the latest
platform. This forces the
player to be fast and keep
moving, or else risk falling off
the platform. For every item
that the player collects, their

score increases. The platforms
vary in style. A portion of
them will have spikes, while
others will have springs, and
some will even have enemies.
As the player progresses
through the endless level, the
platforms that appear are
increasingly more difficult to
navigate.

Procedural Generation
FIRKANT uses procedural
generation to have the player
stay invested, as they’re
expected to keep playing
repeatedly to beat their high
score. FIRKANT tracks how
the player is playing by
watching the time they spend
on each platform, what they
most often die to, how they’re
navigating, etc., to then adjust

“This forces the

player to be fast

and keep

moving, or else

risk falling off

the platform.”

51

By Peter ’tehwave’ Jørgensen

@tehwave

52

 the platforms accordingly to
keep it just challenging enough
for the player, so that they’re not
put off by the difficulty, and they
want to keep trying to beat their
high score. Each platform is
designed to be increased in
difficulty by adding hazards,
springs, temporary platforms,
and enemies to the platforms.
Beyond this, platforms can have
a set of rules applied to them,
such as ‘don’t generate this if
last platform was of this design,’
which helps free up limitations
to their design.

FIRKANT is the perfect
candidate on how to effectively
use procedural generation to
keep gameplay exciting and
fresh. For more information
about FIRKANT, visit the website
at
https://peterchrjoergensen.dk/FI
RKANT and subscribe to the
newsletter via the form on the
bottom of the page. You can
follow its development on
Twitter via @tehwave and
#FIRKANT.

Image of ELiDE,

the graphical

frontend

https://peterchrjoergensen.dk/FIRKANT
https://peterchrjoergensen.dk/FIRKANT

53

The game “The Witcher 3” (CD Projekt RED, 2015), a fantasy role
playing game based on the novels by Polish author Andrzej
Sapkowski, has been hailed as one of the best games of the last
few years. The game has a very long and complex story which
puts the player in front of non-trivial choices with long lasting
consequences. While the music produced for the game is also of
very high quality, as I was 10 to 20 hours in the game, my
immersion started getting broken by the same tracks being
repeated over and over again. Is it possible that in every inn the
same music is always played?

Computer games have properties that make them particularly
interesting and challenging for this kind of music generation:
unlike traditional sequential media, such as novels or movies,
events unfold in response to player input rather than a linear
narrative. Therefore, a music composer for an interactive
environment needs to create music that is dynamic, while also
holding the listener's interest and avoiding repetition. This
applies to a wide range of games although not all; for example
rhythm games (e.g. Guitar Hero) make use of semi-static music
around which the game-play is constructed.

Moreover, creating dynamic music is not enough: music can be
seen as a communication tool and we believe that it is important
to use it to convey meaning. This research explores how to
express narrative events through mood expressive music. It is
important to note that in this domain there is not only a
predefined narrative, but also an emergent one dictated by the
player's actions.

The MetaCompose system was designed to create structured and
varied music in real-time, through a combination of a graph

By Marco Scirea

@MarcoScirea | http://marcoscirea.com/

“Therefore, a music

composer for an

interactive

environment needs

to create music that

is dynamic, while

also holding the

listener's interest

and avoiding

repetition.”

http://marcoscirea.com/

54

traversal-based chord sequence generator, an evolutionary
search-based melody generator, a pattern-based accompaniment
generator, and affective improvisation.

MetaCompose achieves this mood-expressive music by creating a
composition (a chord sequence, a melody, a basic rhythm, and
basic arpeggio), which is then rendered in real-time by a number
of improvisational modules. These modules use a
mood-expression theory based on a number of musical features
(intensity, tempo, rhythm, timbre, and dissonances) to change the
way they express the information contained in the composition,
achieving different affective expression.

We have conducted several studies to validate the system's
structure and its expressive capabilities. The results of our last
study highlight how, while our mood expression theory is far
from perfect, it allows for reliable expression of arousal and of
strong differences in valence. Moreover transitions between
affective states are generally correctly perceived which means
that, while there might be disagreement between how to annotate
the expression of a particular piece, participants distinguish
changes in expression (e.g. from less to more negative).

But the real question that we should ask is: How do players react
to exposition to such music while playing a game? We performed
an experiment where MetaCompose has been used to create
background music for the game of Checkers. Results show how
the usage of the MetaCompose system while trying to express
affect consistently with the current game state is better perceived
by the players compared with random affective states and static
expression.

Needless to say there are many improvements that the music

“How do players

react to exposition

to such music while

playing a game?”

55

generation system would benefit from, and there are limitations
in the domain itself. The most important of the latter are that the
system is based on (and evaluated on) Western music, so its
generality with different cultures is unclear, and that there is a
strong difference between perceiving a mood and feeling a
mood.

The most exciting extension of this work can be summarized in
the figure.

The player, being human, possesses an emotional state which
might vary depending on the game. Of course this emotional state
depends on many external factors besides the game but, as these
factors are uncontrollable, when looking at this as a closed
system we assume that changes are triggered by the interaction
of the player with the other components of the system.
Players can get frustrated, find solace, relax, get excited, and
much more by playing a game; what we would like to explore is
the effect of affective music on this process, specifically if the use
of specific affective expressive music could influence the player's
experience and emotional state.

“Players can get

frustrated, find

solace, relax, get

excited, and much

more by playing a

game...”

56

A clear problem arising from this system is how to detect the
player's emotional state; an emotional model of the player could
be created through data mining techniques on a combination of
in-game data, self-report, and physiological measures.

This would allow us to experiment on how different expression in
music might affect the player depending on her current state,
ultimately creating more engaging and interesting experiences.
You can find out more about our findings and MetaCompose (and
of course samples of music) on http://marcoscirea.com/.

http://marcoscirea.com/

57

Here are interesting approaches toward helping you explore their
game’s possibility space. Or, here are some generative schemes
that could only be pulled off with a human-in-the-loop.

Mu Cartographer (@Titouan_Millet)

In: 1 joystick + zoom, 1 sinusoidal wave decomposition, 1 graph, 1
box o’ radio buttons

Out: view onto a dynamic topography, journal pages

None of the inputs are labelled for what they do, especially the
ones which parameterize the topography. But conversion of
joystick coordinates from polar to rectilinear are not much worse
than the usual one-to-one mapping.

These are very generous black-box transformations, in the sense
of having only a few unexpected behaviors, and eventually
periodicity. Learning them reveals content, not just randomized
minerals. Satisfying.

By Jasmine Otto

@jasminumlutris | https://github.com/jazztap

“But conversion of

joystick coordinates

from polar to

rectilinear are not

much worse than

the usual

one-to-one

mapping.”

https://github.com/jazztap

58

Similar:

● GIMP’s layer modes and brightness curves
● planted items which persist into your inventory, with

attached story

QWOP (@bfod)

In: 4 buttons

Out: a Simulated Athlete

The inputs are labelled exactly for what they do. The vast
majority of input sequences kick you out of the standing ‘inverted
pendulum’ state, so you fall over. So unfortunately, this simple
game is not nearly as learnable as our last one.

Alas, your horizontal speed is not mapped directly to two buttons,
but instead emerges as you push yourself along (over) the ground
with your legs. Biologically, this should really involve at least 8
inputs, for each hinge joint is stabilized by a pair of opposite
muscles. At which point we may prefer to drive input from a
‘central pattern generator’, for example, a neural network with
predefined weights and periodic output due to symmetry.

But if the rhythm is even slightly out of sync, it would be wise to
include a feedback which nudges our runner back into the
unstable standing state, before it is too late. I would love to know
the relative weighting of this feedback, even though we both

“But if the rhythm is

even slightly out of

sync, it would be

wise to include a

feedback which

nudges our runner

back into the

unstable standing

state, before it is

too late.”

59

 know full well how to walk in any number of appropriate gaits,
given only a direction and a speed. So the complexity abstracts
itself away.

Similar:

● ‘How to animate cube in Houdini’
● Wii Tennis, played by ear

In a Wicked Age: four oracles (@lumpleygames)

In: 1 complexity dropdown, 1 reroll button

Out: assorted actors enmeshed in plots

This is a button that makes four stories. Well, it throws their
pieces at you. You should probably steal more pieces when the
one story you really like runs out of them? There are no rules.

Similar:

● WTF is my DND Character
● Fiasco

60

Grim Dawn (Crate Entertainment)

In: 12 hotbar buttons, 1 paper doll w/ inventory tetris + transfer
area, 3 progression trees, 1 house points display, 1 journal,
assorted shortcut buttons, 1 mouse

Out: a bad*ss pile of stats

In the narrow region between ‘getting one-shot a lot’ and ‘press x
to clear the screen’, there is compelling incentive to learn your
Most Spammable Ability, your Nuke, your Transient Buff(s), your
Reposition, your Resummon, and your Panic Button(s).

Of course these will change in ten levels when a succession of
sweet gear with stats viable for your class combo’s other build
drops, and you unlock an effect that makes your Nuke into a
Resummon and gives your Reposition an AoE DoT.

There’s also the usual cookie-clicker feeling, but shh, you’re
playing the keyboard like a star.

“There’s also the

usual cookie-clicker

feeling, but shh,

you’re playing the

keyboard like a

star.”

61

Similar:

● Lego Star Wars, in local co-op with oneself
● Fighting games on button-masher difficulty

Hadean Lands (@zarfeblong)

In: several highly context-sensitive verbs, 1 set of notes, 1 map

Out: prose

Sometimes the sequence of your input gets messed up, and you
have to retype it all from the beginning. In some terminals you
can press a sequence like (‘up’x4 ‘enter’)x3 to reproduce your last
three actions before the reset exactly. In others you can declare
rituals much longer than three lines explicitly, and rerun them
from the top as need be.

In this parser, the higher-level procedures write themselves. Not
only that, but they establish all of their pre-conditions. Not only
that, but some pre-conditions are mutually exclusive (especially
due to having one copy of a given ingredient), so you can re-write
the ritual on the fly to not interfere with your next move.

It is absolutely freeing to mess around without having to re-do
the last fifteen (ninety+) minutes of your life, and not even have
to wait for the savegame.

Similar:

● Pyke, Prolog, and logic programming
● Jupyter, Sweave, and IRL reproducible research

62

By George Baron

@PixelbearGames | https://pixelbear.itch.io/

About Me
I am currently studying computer science as a masters student at the
University of Sheffield, with a keen interest in graphics
programming, art and game design. Recently as a hobby I have
started to create demos akin to things you would find on the
demoscene, and the following article is a result of my poking around!

Introduction
Procedural generation comes in a wide variety of flavours, from
using it to create believable open world environments to
constructing little bits of dialogue for some random NPC. Most
techniques rely on some kind of "library" of pre-defined outcomes to
choose from; for instance, a procedurally generated world might
place pre-designed assets such as trees and rocks into the world
based on an algorithm.

What I am going to talk about in this article is an entirely different
approach to procedural generation that instead renders a 3D world
based purely on the mathematical definitions of objects. The
technique is common practice over on Shadertoy, so if you are
interested at all, Shadertoy is the perfect place to start!

What are Signed Distance Fields?
Signed distance fields are an entirely different approach to
rendering. Instead of defining an object using a discrete number of
triangles as you would in a typical application, signed distance fields
represent the object with a purely mathematical definition, allowing
for the continuous sampling of points. Below is a small diagram
showing how a sphere looks with traditional polygonal-based 3D
rendering, and how a sphere looks using signed distance fields!

“...different

approach to

procedural

generation that

instead renders a 3D

world based purely

on the

mathematical

definitions of

objects..”

https://pixelbear.itch.io/

63

The main thing to take away from the diagram is how smooth the
edge of the signed distance field is compared to the polygonal
sphere! So how exactly are signed distance fields defined? Quite
simply, in fact! As the name suggests, they are based on "signed
distance" - for signed distance fields, this means that for any point
in space, a distance from the point to the edge of the field is
taken. The distance can describe three different outcomes:

● Distance is positive, so the point is outside of the field.
● Distance is zero, so the point is on the edge of the field.
● Distance is negative, so the point is inside of the field.

The following diagram shows this more clearly.

64

1. The point is outside of the field, so returns a positive distance from
the point to the edge of the field.
2. The point is inside of the field, so returns a negative distance.
3. The point is on the edge of the field so returns zero. In most cases
this would be taken as inside of the field.

By describing an object in this fashion, thousands of points could be
randomly selected in space and suddenly an image of the object
would start to become apparent. The only problem with this is that
you can't just sample thousands of random points - we need to be
selective to efficiently render the object!

Ray Marching
Ray marching is a rendering technique where, from a point in space,
a ray is cast out in a particular direction and stepped or "marched"
along incrementally. At each step, an approximate distance between
the point on the ray and the signed distance field can be measured. If
the distance returns negative at any of the steps, then the ray has
collided with an object!

This technique can be used to render an entire scene. If you imagine
the computer screen as a "window" into a 3D scene and you sat in
front of the screen as a camera, a ray can be marched out from you,
through a pixel in the screen and out into the 3D scene. By doing this

65

for every pixel in the screen, a 3D environment can be deduced
and drawn efficiently.

Shadertoy
Unfortunately I do not have enough time to detail an actual
algorithm for this, but fear not! A really awesome interactive
tutorial by TekF is available on Shadertoy here -
https://www.shadertoy.com/view/MdBfRK. Shadertoy is a
wonderful website for graphics programming that lets users
write pixel shader programs and see the output immediately. If
you are interested in procedurally generated imagery, then
Shadertoy is an incredibly valuable resource!

My Creations
It would be remiss of me to not show off some of the things I have
made using the techniques described above. My interest lies in
creating 3D environments that respond and evolve to music in
real-time, using ray marching and signed distance fields. Below
are a couple of screenshots of things that I have worked on!

“Shadertoy is a

wonderful website

for graphics

programming that

lets users write

pixel shader

programs and see

the output

immediately.

https://www.shadertoy.com/view/MdBfRK

Bad News is an
award-winning installation
piece that combines
procedural generation and
live improvisational acting
into an emotionally charged
45-minute experience. It has
been performed at venues
including IndieCade, where it
won the 2016 Audience Choice
award, Slamdance, and the
San Francisco Museum of
Modern Art. The project has
also been featured in
Gamasutra, The Guardian, and
Rolling Stone, who
proclaimed, "This marvel of
procedural performance can
only be played by a lucky few,
and that's a crying shame."

The game takes place in the
summer of 1979, where an
unidentified resident of a
small American town has died
alone at home. The county
mortician is responsible for
identifying the body and
notifying the next of kin, but a
matter in a different part of
the county demands his
presence. Being thus occupied,
the mortician is forced to
delegate this important task to
his newly appointed assistant:
the player.

To carry out the task, the
player must navigate the town
and converse with its
residents in order to obtain
three crucial pieces of
information, each of which
can only be discovered by
knowing the preceding piece:
the identity of the deceased,
given only the person's
physical appearance and
home; the identity of the next
of kin, given the identity of the
deceased and an explicit
notion of a next of kin (which

“Being thus

occupied, the

mortician is

forced to

delegate this

important task

to his newly

appointed

assistant: the

player.”

66

By James Ryan, Ben Samuel, & Adam Summerville

https://www.badnewsgame.com/

https://www.badnewsgame.com/

67

is provided); and the current
location of the next of kin,
given his or her identity and
any other relevant
information that the player
has gathered. Finally, upon
locating the next of kin, the
player must notify that person
of the death. Throughout, she
should remain discreet, so as
to respect the privacy of the
family.

To begin, the player is led by a
guide to a quiet room, where
she sits on one side of a
constructed model theatre; on
a raised surface with black
tablecloth lies a tablet
computer, a notebook, and a
pen. A live actor sits across
from the player, hidden by the
theatre's adjustable curtain;
behind a permanent lower
curtain, a hidden screen
displays a special actor
interface and a concealed
microphone captures sound.
Out of sight, a wizard listens to
the audio feed; prior to
starting, he generated the
unique town that the
playthrough will take place in
(more on this below).

From here, the player
proceeds by speaking
commands aloud; the wizard
executes these throughout
gameplay by live coding
modifications to the
simulation in real time. The
most common commands are
moving about the town (in a
direction, or to an address),
viewing a residential or
business directory,
approaching a character to
engage in conversation, but by
incorporating a human
back-end almost any
command is possible. As the
player navigates the town, her
interface updates to describe
her current location.

When a player approaches a
town resident, the hidden
actor interface updates to
display details about that
character's personality, life
history, and subjective beliefs.
After spending a few moments
preparing for the role, the
actor pulls back the curtain to
play that character live. As the
subject of conversation shifts
between residents of the town,
the wizard crucially updates
the actor interface to display
the character's beliefs about
that particular resident.

Meanwhile, the wizard
queries the simulation for
narrative intrigue (again by
live coding), which he can
deliver to the actor directly
through a live chat session

(e.g., "you were in a love
triangle with the next of kin").
In performing a given town
resident, the actor must
adhere to that character's
generated personality, life
history, and subjective beliefs.

Gameplay ends once the
player notifies the next of kin
of the death. A typical session
lasts roughly 45 minutes,
though the wizard and actor
can coordinate in real time to
control this.

Each Bad News town is
procedurally generated using
the Talk of the Town AI
framework. Employing a
method inspired by Dwarf
Fortress's world-generation
procedure, each town is
simulated from its founding in
1839 up to the summer of
1979, when gameplay takes
place. Over the course of this
simulation, hundreds of
generated town residents live
out their lives, embedding
themselves in rich social
networks and forming
subjective (often false) beliefs
about the town. This provides
an abundance of narrative

68

“Each Bad News

town is

procedurally

generated using

the Talk of the

Town AI

framework.”

69

material and dramatic
intrigue—family feuds, love
triangles, struggling
businesses—that exceeds the
capacities of a 45-minute
playthrough. A
hand-authored experience
might only be able to tractably
fill out the lives of a dozen or
so characters, but the
procedural nature of Bad
News means that every
simulated person in the town
has the same depth, allowing
the player to go anywhere and
talk to anyone without finding
any seams.

The exciting combination of
technology and live
improvisation is driving an
emerging genre of related
projects including Dietrich
Squinkifer's Coffee: A
Misunderstanding (2015),
Twocan Consortium's Séance
(2016), Ian Horswill's Dear
Leader's Happy Story Time
(2016), and Handsome Foxes
in Vests's "The Truly Terrific
Traveling Troubleshooter"
(2017).

Bad News is project by Adam
Summerville, Ben Samuel, and
James Ryan. It is currently on
hiatus.

70

By Owen

@newogame | http://owensoft.net/v4/item/2394

Despite what online video tutorials might lead you to believe
procedural generation (procgen) in video games is hard, like really
hard. You might as well skip height maps and go right to the hard
stuff. The hard stuff will sneak up on you quickly like enemies
popping into view in a n64 game. Coincidentally the hard stuff is the
same point at which most tutorials reach 10 thousand lines of code
and stuck in a corner to linger forever. I am not going to go down
that path, all I am going to do is outline what I have learnt over the
little time I spent working on my own little procgen side project.

Randomness and Chaos

People seem to think of procedural generation (pg) as generating
random points for use in a rendering graphics or content but soon
they will discover that it is not about the randomness at all.
Randomness is just a side effect that often leads to chaos when you
are working with human beings. What you really need is
constrained "predictability". Randomness is the least of your
problems. Predictability is why so many tutorials use simplex/perlin
noise. Simplex noise gives predictable results in a set range between
-1..to..1 which you can use to produce predictable procedural
content that only "seems" random. Randomness is NOT what you
want. The goal is to have controlled space that appears random - not
chaos.

Avoid simulating the real world

Some will attempt to create something like what was done in No
Man's Sky or Minecraft but fail to understand that the real world
does not work like a computer. No matter how much code you write
or fast the code is you cannot simulate everything in the real world.
And even if you try, it is going to take you a really, really, really long
time just to get the basic stuff in place. You are gonna have to decide

http://owensoft.net/v4/item/2394

71

 what is important to simulate and what you will simply leave to
the imagination. Game consoles and computers nowadays have
upwards of 4 gigs of RAM and they still have to resort to trickery
and shaders. It may seems like your favorite game is a true
masterpiece but it is mostly smoke and mirrors once you figure
out how it all works. This figuring out takes time - many dead
bodies liter the highway.

Picking a noise function

A good noise function needs to be fast and is often complicated to
code so it is best to stick with simplex noise or something similar.
Tutorials often state that you can use any noise function you want
but you want to avoid functions that are "random" as mentioned
earlier - you want to know what result you are going to get. And
you want to be able to repeat previous results so that you can test
different outcomes in different scenarios.

Draw distance, view space, LODs, cache and culling

You will be tempted to fill your screen with tonnes of flowers and
trees and such early on until you realize that your computer
cannot keep up with all the information. The world is full of
information, more information that you can imagine. Most pretty
video games that you see being published today are using all sorts
of trickery to render the information you see. It is not only down
to the skill of the program but Art, RAM and disk read speed. The
level of detail (LOD) of the environment has a lot to do with it as
well. Some games have asset pipelines that auto-generate
thousands of models just for one scene and then stream them in
seamlessly. Other games store entire static sections of the game
world on disk or in memory during loading instead of rendering
it all in real time. You will have to sacrifice something depending
on your situation. If you cannot pay 10,000

72

artists then you might want to keep your scope down to something
that you can mange.

Distractions are everywhere

Feature/Scope creep is worse in procedural generation. Everybody
wants everything as the case was in No Man's Sky. You think you can
program every leaf on a plant blowing in the wind on a moon of
Saturn but how much time do you have in the day? Not allot. And
you will see someone using a cool shader in Unity and you will be
like: "I want that in my code too!". Avoid the temptation. That stuff
will only lead you down a road of pain and frustration. That fancy
shader is probably using up 90% of the available CPU/GPU cycles -
leaving nothing left for any kind of game play. It took me almost a
year to get wave animations on bodies of water. It just came to mean
one night but the key lesson is being able to notice when a
"nice-to-have" feature is wasting you productive time and being able
to leave it alone and move on to something more important.

Keeping track of everything

It is good to be generating lots of stuff but you will come to a point
where you need to know where something is or was and some kind
of key/id to identify it. There might be objects that are longer needed
such as dead enemies and trees that you have already cut down. The
solution that I have is to keep track/save the xyz point at which I
generated the object. In my system I try to ensure that only one thing
is generated at every point in the world. So even if the object has
moved to another spot I can check the object listing to see if
something with an matching origin point has already been generated
or if I need to generate it for the first time. This only applies to things
that can be killed or have AI movement. Most things would
otherwise not need to be tracked.

“There might be

objects that are

longer needed

such as dead

enemies and

trees that you

have already cut

down.”

73

When the going gets tough

While writing your #procgen thing one of the first challenges you
will come up against is how to place stuff in the world without
them overlapping against each other, floating trees, planets
colliding and caves - Oh god caves! This is what a lot of online
tutorials fail to tell you: if you start by using height maps you are
going run into a wall where you cannot do caves and you end up
putting too much data into cache. Loops, in loops, in loops, then
you hit the point when you try to solve it with threading -
anytime you see someone start using threading you know that it
is going to be a roller coaster down the rabbit hole. Avoid
threading unless it is the last thing you implement - its a rabbit
hole - it will not help. If the code is too slow to run on the main
thread at such an early stage then you are doing too much. Stop -
hammer time.

Conclusion

In the end procgen is not about replay-ability or creating lots of
content or infinite worlds or pretty graphics or whatever people
are hyping nowadays. Procgen is (at its root) about maintaining
state of a complex system. You can generate a billion pieces of
content but if you cannot put them together in a cohesive system
then you are basically just generating garbage at which point you
might as well hand make the level and be done with it. You can
only play a game that you finish making. Expect to spend a great
deal of time figuring out how to keep the state of all the stuff you
are generating. Anyway good luck and happy proc-gen-ing!

74

By Jason Grinblat

How the Twitter Bot Unknown Peoples Evokes Such a Vividly
Gentle World

The People of the Eastern Depths. They love to tell stories about
the fall of the Bird City.

> What music do they make?

Their pipe players wear platinum-scale belts.

> What is their architecture?

Their architecture is based on the triangle.

> What do they eat?

They prefer to eat a simple bowl of shellfish and offal.

The exchange above does something magical for me. It paints an
intimate portrait of a mysterious people while inviting me to puzzle
out the meaning of their customs. Why is their homeland called the
Eastern Depths? What does it mean for their architecture to be based
on the triangle? What is the Bird City, and what happened there? Its
brush strokes are broad but its colors are so vivid.

The exchange comes from a conversation between a Twitter user
and an interactive bot called Unknown Peoples (@neighbour_civs).
The bot, whose words are bolded, tweets descriptions of cultures
from across a vast, pretend world. It’s part ethnographic tome, part
AI oracle, and part text adventure game. Over the course of its
several thousand tweet lifespan, it’s conjured into being a wondrous
and tender world.

https://twitter.com/neighbour_civs

75

Unknown Peoples was created by artist and game maker G.P.
Lackey (@mousefountain)[1]. Beyond the usual questions that
preoccupy the fantasy genre, G.P.’s work tends to ask questions
like: what does comfort look like? How do people share? How do
they celebrate? This kind of examination of a world’s soft
edges—this otherworldly gentleness—typifies Unknown Peoples’s
output.

The bot was created with Cheap Bots, Done Quick!, a beautiful
little technology stack that lets artists make Twitter bots without
needing to know how to code. CBDQ’s bots are stateless, meaning
they have no memory of their former tweets. For Unknown
Peoples, this means that each culture’s description is generated in
isolation. Even the replies to questions about a particular culture,
like the ones above, are generated without knowledge of the
original tweet. So how can the output feel so coherent? How does
the sense of otherworldly gentless float from culture to culture,
custom to custom, tweet to tweet? A novel’s author might spend
several chapters layering meaning and mood to produce this kind

A follower’s

interpretation of

an Unknown

Peoples’s tweet.

(credit: James

Head, @djemps)

[1] With small
contributions by

Tanya X. Short
(@tanyaxshort)

and myself
(@ptychomancer).

https://twitter.com/mousefountain
https://twitter.com/djemps
https://twitter.com/tanyaxshort
https://twitter.com/ptychomancer

76

 of coherence. The bot maker lacks this affordance and must instead
conjure it from disparate parts. They share some of the same tools of
language, but even more fundamental to the bot maker is the act of
proceduralization—the deconstruction of something like a culture
into its constituent objects and relationships—and how that process
encodes meaning.

Unknown Peoples, like all CBDQ bots, uses a tool called Tracery to
define a generative grammar that produces its output. A grammar is
simply a set of nested rules [2]. Grammars are used to generate all
kinds of output, but text generation is one of their most common and
straightforward uses. In writing the rules for Unknown Peoples, G.P.
took his mental model for what it means to be a culture and chopped
it up into a set of objects and relationships. There’s a tremendous
amount of expression in this process. Choosing how to represent
something—enumerating the properties that comprise it, and
conversely, omitting the ones that don’t—is making an argument
about how we should perceive it. Unknown Peoples encodes
culture-ness as rules about food, art, music, sports, and fashion. In
doing so, it constructs a vision for what a culture is, or at the very
least how we might choose to see it.

The rule for choosing what type of
statement composes a culture’s
top-level description. It encodes
certain beliefs about what’s
culturally important, and in doing
so it contributes to a perspective
the bot is offering and an argument
it’s making.

[2] Check out
Kate

Compton’s
wonderful

blog post on
generators for
details about

grammars:
http://galaxyk
ate0.tumblr.c
om/post/1397
74965871/so-y
ou-want-to-bu
ild-a-generato

r

http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator

77

These kinds of representational choices are made at all levels of
the grammar. In writing the rule for #statementFood#, G.P.
specifies what food looks like in this world and what cultural
roles it might play.

The same is true for all sorts of choices: what relationships look
like, how trade is conducted, and what kinds of stories are
shared, to name a few.

The terminal rules—those whose values don’t contain new
symbols—are often simple word lists that are consumed by the
higher-level rules. Examples include meal ingredients, building
materials, and nautical adjectives. Here the bot maker employs
the familiar tool of diction. By choosing which words to include
among the list of possibilities, the bot maker infuses their output
with a certain tone and mood. G.P. has chosen naturalistic
ingredients that paint a pastoral picture.

The rule for

describing a

culture’s food.

78

As a whole, Unknown Peoples’s grammar acts as a sort of
proceduralization of G.P.’s voice as a creator. It encodes the
perspective, mood, tone, and vision that he might manually
assimilate into a wholly handcrafted project. But by virtue of
Unknown Peoples’ procedurality, we get to continually engage with
new and surprising manifestations of this vivid, gentle world.

Food and

beverage

ingredient word

lists. The diction

gives the output

a pastoral feel.

79

By Matthew Keff

@matthewkeff | http://matthewkeff.com/

http://matthewkeff.com/

80

81

This image was

used for the cover

of this Seeds Zine

(Issue 2)

82

By Elle Sullivan

@THISISDINOSAUR

One thing that has always struck me about a lot of attempts at
procedurally generating creatures is how many of them tend to fall
at either end of a spectrum. On one end, they work by making
changes to a base mesh, by changing textures, adding or removing
pre built parts (like horns), or sometimes making more significant
changes, like stretching or contracting limbs in No Mans Sky (take a
drink), or the more detail oriented changes affording by things like
the Sims character editor. This kind of approach can give highly
predictable results, and the results can be much easier to work with
(for example, animating an unchanging base mesh is relatively
straight forward), however they can be quite limited, given the
relative inflexibility of the original base mesh, and are unlikely to
surprise you. and tender world.

This stands in stark contrast to the systems at the other end of the
spectrum, that generate from practically nothing, usually using
evolutionary methods (e.g. genetic algorithms); Karl Sims' creatures
is possibly the most famous of this class of generators. This kind of
approach can produce a wide variety of interesting things,
potentially well beyond the imagination of the person that created
the generator, but they can be almost impossible to work with; it's
difficult to get them generating anything at all, and then it's even
harder to work with the result: you need a system that can animate
anything, and you have no information to inform anything else (for
example, what kind of environment does your newly generated
creature live in? You need some sort of selection criteria to create
something that looks like it truly belongs).

To me, the most interesting kind of generators are therefore those
that fall as far towards the latter end of this spectrum as possible,
whilst still being fully capable of integrating its results into a project
(e.g. a game) in interesting ways. Spore was particularly interesting

83

in this regard (take a drink), with its well constrained generation
but with a large flexibility of body shapes, configurations of legs
etc, but, like no man’s sky (drink), the results are fairly alien, and
there's a significant reliance on less flexible add on parts.

The evolutionary approach in particular I think is usually far too
random and undirected, and too ambitious. They typically
generate from nothing, trying to simulate millions of years of
evolution. Say if we are trying to make a general animal
generator, we have a lot of knowledge of animals and evolution,
so I'm interested in leveraging that to give computers a head
start. I am therefore interested in approaches that are more in
the middle of the spectrum, where the generation is very
directed, but starts from a more abstract and flexible point than a
base mesh; the idea being that the end results are easy to predict
and control, and that should afford all manner of interesting uses,
thanks to meta data from the generation process (more on that
later). It is with this in mind that I came up with The Dinosaur
Generator.

The original idea for this project came from the fact that
Dinosauria isn't really that diverse (at least when compared with
say, all mammals), consisting of theropods (carnivores),
sauropods (the long necked dinosaurs), ornithopods (bipedal
herbivores), and the various types of armoured dinosaurs. It
should therefore be possible to use a domain specific knowledge
based approach, with hand written constraints, to generate all the
dinosaurs. So, the first step is to create an engine that can
produce all the dinosaurs (and then some), and to then constrain
it to only produce feasible dinosaurs (e.g. there's a relationship
between the size of the neck, the general posture, and the size of
the tail, otherwise the creature would fall over).

“They typically

generate from

nothing, trying

to simulate

millions of years

of evolution”

84

This lead to me producing a DSL (Domain Specific Language) to
specify parameterised anatomies (e.g. a skeleton with variables, like
tail length and scapula size) that supports interdependencies, so
things can change not just based on the parameters directly, but can
be functions of other parts of the anatomy, so the length of the tail
could depend on not just on the tailLength parameter, but could be a
complicated combination of also the neck length, the size of the
head, the body angle etc. This can allow for highly constrained
anatomies, or ones that are barely constrained at all (e.g. this could
be written to be heavily parameterised and have no
interrelationships or constraints (i.e. every bone could be at any
angle, size, length etc.), or in theory this could be written to be so
heavily manually constrained that no matter the parameters, every
output is a feasible dinosaur, and that it's capable of producing every
dinosaur).

Once you have such an anatomy description (constrained or
otherwise), you can parameterise known dinosaurs in the system,
which then allows you to do all kinds of cool things. With the real

Figure One: an

infeasible

dinosaur,

produced when

the engine has

few constraints

(and a friend is

given access to

the sliders)

Figure two: a

small snippet of

the language,

defining two

bones, and two

connections.

85

world knowledge of existing dinosaurs, you could do similarity
comparisons of any generated dinosaur to find its closest
relatives and construct fictitious phylogenetic trees. You could
then use this to inform name generation. You could even do
things like use this to populate areas of a game where
fossilisation is less likely (i.e. areas where we know less about the
dinosaurs that inhabited them) with dinosaurs that are more
different to any known dinosaurs, or to figure out where a
generated dinosaur was most likely to live and to populate areas
appropriately. You could also use it to inform its relationships
with other dinosaurs (both generated and real), like predator
prey relationships. You can use it to inform its diet, its mating
habits, how likely it was to have feathers, how fast it is, it's most
likely cause of death, and anything else you can think of. Now
that we have these parameterised existing dinosaurs, this leads to
the realisation that we could use them to probabilistically infer
constraints, instead of trying to manually write them. (E.g. if we
have a dinosaur with a massive head, long neck and tiny tail,
there would be no dinosaur in the set of existing dinosaurs
remotely close to this combination of parameters, so the
probability of it being generated would be incredibly small). This
could be done with a number of methods, such as using machine
learning to create a machine that says whether any particular set
of parameters is feasible or not (or gives a continues feasibility
score), or perhaps a more straightforward method, such as
selecting each parameter value as some function of how likely
each specific value is to be in the set of existing dinosaurs (and
each subsequent parameter could then be selected based on the
likelihood of each value given the already selected values). If
required, to bulk out the data it's not even necessary to use
existing dinosaurs, the generator can be set to randomly generate
large numbers of dinosaurs, and they can then be marked as
feasible or infeasible (although, depending on constraints, there
may be too many unfeasible to feasible ones, so existing
dinosaurs could be used to bias the generation procedure for this

“You could also

use it to inform

its relationships

with other

dinosaurs (both

generated and

real), like

predator prey

relationships.”

86

data could be used to bias the generation procedure for this data
collection). So, with this approach, the generator is still domain
specific, but the domain specific knowledge goes only into the
creation of the generator engine, rather than in the manual writing
of constraints on the output of that engine (although it's certainly
still possible do both).

At present, The Dinosaur Generator is currently not really concerned
with anatomical accuracy, as long as the dinosaurs look feasible. I
believe the general approach isn't incompatible with anatomical
accuracy and precision, but would certainly take a lot longer and
require more complexity/detail in the anatomy specification.

Figure four: An

ornithomimosaur, an

ostrich like theropod.

Figure three:

Top, a sauropod

produced by The

Dinosaur

Generator.

Bottom, a

theropod

87

I think one of the most interesting things to come in this project is
seeing how far it can be generalised for other creatures. Birds are
an obvious first step, but the most interesting thing will be
finding out how much manual constraining will be required as
the scope is expanded, how much the complexity of the
constraints required will grow with the scope, and just how wide
the scope of a single anatomy description can be. For example, it
may be possible to write a single very general and unconstrained
specification that can generate birds, dinosaurs, and even
mammals; or they each might have to be a separate specification,
each with large numbers of hand coded rules to help limit it only
to animals that are feasible. Another interesting avenue to
explore is beyond real animals, to see if this approach can be
used to generate alien creatures, whilst maintaining the benefits
gained from the meta data.

Of course, one of the main challenges of an overall generation
approach like Figure five: It is early days for the armoured
dinosaurs Figure six: It is the relative similarity between
seemingly disparate animals that hopefully means this approach
will be capable of producing a wide range of different animals
Image take from Evolution in Action (photographs by Patrick
Gries) this is then in using the results; in the mesh generation, the
rigging, the animation, and in the other steps required to fully

Figure 5

88

 integrate the output into a project, but I believe these are all areas
where the metadata will once again be invaluable. For example,
generated dinosaurs could be animated by blending combinations of
hand animated existing dinosaurs, again based on the similarity
comparison done before. Still, there are no doubt significant
technical and conceptual challenges ahead for the project if it is to
get to a point where the assets could be used in a completely
unconstrained 3D game.

Figure 6

89

Diablo’s initial pitch document highlights the use of Procedural
Content as a prominent feature of the game:

 “The heart of Diablo is the randomly created dungeon. A new
dungeon level is generated each time a level is entered, using our
Dynamic Random Level Generator (DRLG) System. Rooms,
corridors, traps, treasures, monsters and stairways will be
randomly placed, providing a new gaming experience every time
Diablo is played. In addition to the random halls and rooms,
larger ‘set piece’ areas, like a maze or a crypt complex, will be
pre-designed and will appear intact in the levels. This system
facilitates the inclusion of puzzles and traps, and helps the
addition of thematic elements. Deeper levels will contain
progressively more difficult creatures and hazards. A character’s
quest must end with the defeat of Diablo, located deep in the
dungeon”[1].

In reflecting on the success of Diablo, the DRLG would later be
praised by those working on subsequent editions as being a
major selling feature, due to such elements as the extended
ability for replaying the game. Jay Wilson, lead designer for
Diablo III, would remark that “games that have
randomly-generated environments with randomly-generated
encounters. Not easy things to do, but those things are key. It's
what keeps Diablo interesting over time”[13].

To this end we developed a PCG placement algorithm for tiles.
The construction is based off a Genetic Programming approach
which controls the underlying connective graph. Through the
control of an objective function which can develop levels which
meet with narrative or technical requirements.

By Joseph Alexander Brown & Valtchan Valtchanov

@jb03hf

“Through the

control of an

objective

function which

can develop

levels which meet

with narrative or

technical

requirements.”

90

The first generation method aimed to have a compact room set
with well-connected hallways with three boss battle rooms:

In order to show that on-demand generation could be achieved,
we limited the size of the level to 100 rooms, created in no more
than 500 evaluations of the fitness function, with the same
requirements:

91

Third, we examined if there was a way to not only have boss
battle rooms at the edges of the map, but also to maximize the
distance between the each boss room.

92

Finally, looking at a number of games, boss battles act as
gateways to other areas, so the last fitness function maximized
the distance between the boss battle rooms, and then after this
was generated, a second round of generation locked off sections
of the map until after each boss battle:

93

This was not always successful as sometimes the boss rooms
would be too near the start of a section, not allowing any further
generation:

You can learn more of the technical details of the generator in [3]
and in future work we would like to place some of these levels
into a real game environment.

References

[1] Condor. Diablo: A game concept by Condor, Inc. 1994. Available at
http://www.graybeardgames.com/download/diablo_pitch.pdf

[2] M. Lopez. “Blizzard's Jay Wilson Talks Diablo III” Game spy, page 2, August, 20, 2008.
http://pc.gamespy.com/pc/diablo-iii/901260p2.html

[3] V.Valtchanov and J.A.Brown. “Evolving Dungeon Crawler Levels with Relative Placement”.
In Proceedings of the Fifth International C* Conference on Computer Science and Software
Engineering, pp. 27-35, 2012. https://tinyurl.com/seeds2Diablo

http://www.graybeardgames.com/download/diablo_pitch.pdf
http://pc.gamespy.com/pc/diablo-iii/901260p2.html
https://tinyurl.com/seeds2Diablo

94

By James Earl Cox III

@just404it

There is an adage that claims any creative project can be done fast,
done well, or done cheaply, but you can only have 2 of the three.
When making a small freeware game, or a prototype, having it done
well may not matter.

For a few projects, I outsourced music to people on Fiverr, a website
where you can pay 5$ to people of the internet to do specific tasks.
The music was never great, sometimes it was awful, but it was
generally unique. As someone who can’t make music (yet), having
the ownership of a mediocre song that I can reuse in different
prototypes is great. Then I had the idea: what if I made a project
entirely through Fiverr?

“What if I made

a project entirely

through Fiverr?”

95

I can make games no problem, so I wanted to outsource for
something I had no knowledge of: a music video. One with a
dancer, some nice background, lyrics, a beat. Your run-of-the-mill
YouTube music video. But every step would be crafted and
imagined by other people. I reached out to Fiverr for the
following services:

● Background music
● Lyrics and singing
● Music video nature background
● Dancing

Total cost: $95. Not a lot considering all the different components
and time spent.

To ensure I had minimal input, I waited for the previous step to
be completed before I would enter the next. As such, I wouldn’t
ask for lyrics and singing until I could send them the background
music. And I didn’t ask for the Dancing until I had the track with
both music and singing.
The only component I controlled was the core subject of the song.
The lyric and singing artist required a subject for them to sing
about.
Giving up such creative control led to a digital artifact that isn’t
quite anyone’s vision, yet still exists. An Exquisite Corpse of
Internet outsourcing.

The full music video can be experienced here:
https://youtu.be/YJw2RbEyqbU

 It’s wild.

https://youtu.be/YJw2RbEyqbU

96

By Luke O’Connor

@lumoconnor | https://lukeoc.itch.io/

My entry into last year’s ProcJam was A Place to Wander. It was
intended to be a “pure” walking simulator, in which the player
would explore randomly generated landscapes. In the absence of
any narrative or goals, it was important that the landscape itself was
interesting enough to engage the player. I wanted to recreate the
feeling of being outdoors in a wide open space, where you are free to
wander and move towards anything that catches your attention. The
rewards would be the shifting soundscape and visuals, and learning
the lay of the land.

The main inspiration, in terms of interesting game landscapes, was
Skyrim. The world of Skyrim is a diverse mix of mountains, valleys,
wastelands, swamps, forests, coastline and rivers. Regions are
distinct, yet blend together smoothly, and walking for 30 minutes
feels like embarking on a grand adventure. How, then, would I use
procedural generation to create such worlds?

The answer came to me from the world of boardgames. I am a big
fan of boardgames, and growing up I particularly enjoyed any game
in which you could build maps out of modular pieces. More recently,
I had been playing Settlers of Catan, which ended up being the
strongest influence on A Place to Wander’s landscape generation.

https://lukeoc.itch.io/

97

What I like about the maps in Catan is that by randomly placing
the hexagonal tiles you would still end up with an island of
diverse and distinct biomes, each of a similar size. I imagined
building my worlds in a similar way, but instead of using
predefined tiles, I would use tiles which are themselves
procedurally generated.

The idea was that each tile could be generated using a completely
different algorithm, making it very simple to produce a varied
landscape while neatly bypassing some of the trickier aspects of
tuning a more sophisticated algorithm. Mountains would be
generated one way, rolling hills another. This approach is very
extendable: tiles can be added or removed at will, each using a
specialised algorithm to generate their terrain or geometry. It is
also easy to mix the generated tiles with hand-made tiles.

The underlying, tile-based approach was augmented with some
blending between tiles, and a river generation algorithm that
snaked its way along the tile boundaries. These “global” touches
were simple to add and really tied the world together. That said, I
think there is room for improvement in this area, and it is
certainly a less trivial problem than the underlying tile based

98

 algorithm.

Overall, I feel that this method was successful in helping me to
achieve my goals for A Place to Wander. While the layout of tilesis
quite clearly visible from a bird’s eye view of the map, it is less
obvious for a player wandering the landscape. Taking the tile based
“boardgame” approach also paid off when building the soundscape,
which was an important part of the experience. To produce a
soundscape that shifted naturally as the player wandered through
the world, I simply placed a different 3D audio source at the centre
of each tile. I did the same with particle effects, to add to the
atmosphere in each area.

This modular and boardgame-esque approach to procedural level
generation has been successfully used by a number of games,
including some of the most popular 2D Roguelikes, such as Spelunky
and The Binding of Isaac. I believe that it is an excellent way to build
interesting game worlds, and I would thoroughly recommend
exploring its applications in 3D level design.

99

Limitations

I love body horror. I love Cronenberg, I love Shintaro Kago and I
even have a folder on my computer that is chock full of body
horror inspiration. I’ve wanted to make body horror feature
prominently as a game mechanic for a while. However, as a
student in DigiPen Singapore, I am often forced to be realistic.
Students here have a few months to make a game each semester,
often entirely from scratch in C++. Artists are usually overworked
as-is, and my game development group in particular has no
dedicated artist. Doing an animation-heavy game would be
foolish. However, thankfully, limitations can often be a blessing
in disguise.

I am currently working on TRASHBOMINATION, a game about
shooting limbs off procedurally animated abominations. I needed
something that was modular, but also believable.

By Brandon Yu

@Chaoclypse

“I needed

something that was

modular, but also

believable.”

100

The reason that it had to be modular was to facilitate dynamic
removal of limbs - the reason it had to be believable was to make
it as freaky as possible. The procedural animation system made it
really easy to make new abominations, while still being able to
surprise me.

The abominations themselves were not procedurally generated,
but understanding how they were built to be procedurally
animated makes procedural generation trivial.

This being a zine, it’s hard to show them in motion, but you can
see gifs of the abominations moving at my Twitter.
(https://twitter.com/chaoclypse)

It’s Alive!

The way that the abominations work and move is actually very
simple, without even the usage of inverse kinematics. They use
nodes, combined with a messaging system. Each node is only
aware of its parent and its children. This may not be the most
elegant system, but it is trivial to implement and easily supports
dynamical node removal.

Here is a diagram of the layout of the abomination – the arrows
point from the parent to child.

“This may not be the

most elegant

system, but it is

trivial to implement

and easily supports

dynamical node

removal.”

https://twitter.com/chaoclypse

101

The “brain” is first initialized, which then allows it to control
every other node via the messaging system. The message can flow
“up” (sent to the parent, who sends it to its parents, and so on) or
“down” (sent to all of the node’s children, which send it to their
children, and so on).

Whenever a message gets passed to a node, it knows:

1. What kind of message it is (Movement, Translation,
Rotation, etc.)

2. Who sent the message (Parent, children?)
3. What the additional parameters to the message are (A

struct with additional information)

Given this information, it then calls a function that can interpret
that particular message and passes along the relevant
information. This function is a virtual function, which means that
the nodes can use inheritance.

A Variety of Parts

The nodes currently in TRASHBOMINATION are the brain, the
spine, the elbow, the hand and a “tail” that allows for some rope
physics-style action. They all act differently given different
messages and they all also have their own update loops. They also
utilize inheritance – for example, the elbow can inherit from the
spine since it acts similarly apart from maintaining an orthogonal
angle from the parent. The “base” part that they all inherit from
has a variety of convenience functions (such as translation or
checking distance to parent part).

One important thing all of them have is a function that is called
when the distance from their parent exceeds a certain value – in
the case of the spine, it just closes the distance, in the case of the
hand, it moves orthogonally to the direction from spine to elbow.

“They all act

differently given

different messages

and they all also

have their own

update loops.”

102

Moving Along

As an example, the way the abomination moves is similar to how
real animals move. They grip on the floor with their feet,
propelling the rest of their body forwards.

The brain first passes down a MOVE message down the spine,
onto the elbow then finally onto the hand.

The hand then, if possible, grips on the floor, and propels the
body by sending the MOVE message upwards through the body.

The parent nodes will then note that the MOVE message was sent
from the child and then move in the specified direction (Other
nodes that are too far away will be notified, and will act
accordingly). While gripping, the hand remains stationary.

This goes on until the elbow moves too far from the hand, at
which point the hand then uses simple vector math (I used a
reflection transformation) to figure out the next “grip spot”,
which it then moves towards. The hand does not cause the body
to move when it is not gripping the floor, because that wouldn’t
make sense.

And that’s it! Super simple, but effective.

“But if the rhythm is

even slightly out of

sync, it would be

wise to include a

feedback which

nudges our runner

back into the

unstable standing

state, before it is

too late.”

103

Abomination Factory

A major advantage to using a modular, node-based system is that
a large variety of abominations can easily be created. You can
even create the abominations procedurally if you want – any
node is compatible with any other node. And of course, they are
dynamically destructible, as well. This allows you to do a bunch
of cool tricks. A few ideas:

1. Bunch the nodes close together in order to create an
extremely fluid, almost ropey body.

2. Vary sizes over time to create “tails” and so forth.
3. Create a completely “stiff” elbow (keeps the same angle

with the parent at all times) and use it to create
decorations on your abomination.

4. Use the ropey bodies in (1) and combine them with the
stiff elbows in (3).

Here are a few examples of some of the abominations you can
create with said tricks – all are working, walking abominations
made in under 30 seconds each. They can look pretty snazzy,
even when completely static!

104

Conclusion

Procedural animation is great, and extremely versatile. However,
the way you implement it should stem from the feel you want the
creatures to have in-game. If you want to do a more precise kind
of movement, then inverse kinematics is great, but it does come
with its own problems. This is just one simple way to go about it –
be sure to explore!

105

By Serin Delaunay & Łukasz Hryniuk

@SerinDelaunay | https://github.com/serin-delaunay/ | https://github.com/hryniuk

Wangscape converts rectangular terrain tiles into corner Wang tilesets with
procedurally generated borders. These examples use CC0-licensed tiles by
@KenneyNL.

Wangscape can be configured to make borders which are plain, subtle, weird, or
even extravagant! It uses libnoise modules (http://libnoise.sourceforge.net/,
http://www.restnoise.org) as building blocks to blend textures together, which can
be configured by JSON files.

You can try this with your own tiles, too! Download Wangscape for free at
https://github.com/Wangscape/Wangscape. It's under active development by Serin
Delaunay and Łukasz Hryniuk, and we're looking for new contributors. Currently
we're working on a graphical user interface for easier configuration, and support
for isometric tiles.

https://github.com/serin-delaunay/
https://github.com/hryniuk
http://libnoise.sourceforge.net/
http://www.restnoise.org
https://github.com/Wangscape/Wangscape

106

107

Exploring the Frontier

Goblin Frontier is an
open-ended adventure RPG
game which focuses on
exploration, base building,
and survival in the harsh
wilderness of a mysterious
land. The game seeks to bring
together the excitement of
epic adventure games with the
satisfaction and reward that
can be felt when you create a
homestead out of a once
overgrown and wild piece of
land.
The game will allow for
houses and farms to be built
by the player, these can
eventually be called home for
both animals and NPC’s alike.

Crops will need to be planted
and harvested if one expects
to survive on the Frontier.

The Frontier is a dangerous
place and it would be unwise
to travel alone, particularly at
night. Goblin Frontier offers
split screen cooperative play,
so bring a friend or tame a
wild beast to serve as your
companion and adventure
together!

The game features
procedurally generated
terrain so that you will always
have a chance to experience
something new and discover
interesting locations.
Travelers roam the
countryside. Tribes of old and
creatures of myth have been
spotted at the far reaches of
forests and dark depths of
caves. Wizards have been said
to build towers that pierce the
sky. Merchants hide treasure
amongst the hills. The Frontier
is full of unique, handcrafted
places and you will never
know what lies

Concept Art by

@SecondSanta

108

By Matthew Santacroce

@AdventureByte | http://goblinfrontier.com/

http://goblinfrontier.com/

109

 around the corner!

Putting the Pieces Together

Two notable techniques I have
utilized thus far in
development are Perlin noise
and Cellular Automata, both of
which have many variations
that can be implemented in a
game world.
Perlin noise has been
particularly useful in the
generation of terrain in an
expansive world. By
overlapping two layers of
Perlin noise, say one that
returns a height value and
another which returns a
temperature, it becomes
possible to create a variation
in adjacent biomes. These
biomes are specified based
upon any preset combination
of values (height, temperature,
moisture, etc.) returned from
such functions. An example
would be passing an X and Y
coordinate pair into separate
noise functions, values
ranging from 0 to 100 are
returned, which in turn define
a given grid block’s biome or
region designation.

Typical outcomes might be a
“Forest” from a mild
temperature and moderate
elevation or a “Mountain”
from a lower temperature and
larger elevation.

Cellular Automata have been
used for all kinds of things
ranging from creating bodies
of water and interesting cave
networks to groves of trees
surrounding open fields. By
indicating an initial spawn
chance tied to biome type, a
grid of zeroes becomes
partially filled with ones. Then
a specified number of
simulations steps are carried
out on that grid which either
add or remove grid values
based upon neighboring cells.
The grid is used to generate
objects in the game world

based upon those final grid
values. The starting
simulation parameters (initial
spawn chance, growth and
decay rates of the simulation)
are best found by
experimentation. I
recommend starting with
more extreme initial values
and gradually changing to
those in between until an
adequate starting value is
found.

The beauty of procedural
generation is that it allows for
a sense of surprise to be felt
by all of those who play the
game. It offers up unique
experiences which when
coupled with an open and
dynamic world help shape
unscripted narratives that
players can enjoy and share

with others. The excitement of
the unexpected outcomes is
even felt by those who create
procedural content. This game
was made possible by the
awesome power of procedural
generation and it is my hope
that it can serve as a
memorable adventure for
those who get a chance to play
it alone and with friends.

Sharpen your spear and ready
your shield, the Goblin Frontier
awaits!

110

“I recommend

starting with more

extreme initial

values and gradually

changing to those in

between until an

adequate starting

value is found.”

111

Content generators can often be complex. This is frequent
especially when there are stringent requirements for the content:
it must meet a specific art style, or satisfy a particular
connectivity constraint, for instance.

If you have the luxury, it can help to reduce complexity by
reversing the requirements between your generated content and
the surrounding context. Decide what type of generator you need
first, figure out what sort of limitations and problems it is likely
to have, and then make other design decisions.

This was the approach I took when planning Kirigami Beasts, an
online procedural art tool that creates Pokémon-like monsters
(http://kirigami-beasts.com/). The idea for this generator came
when I realised a very simple recursive algorithm could produce
a wide variety of body shapes. I knew from the outset that small
details would be a challenge with this approach, and that it would
make pixel art totally impractical and ugly.

So I designed Kirigami Beasts around its generator’s limitations,
and chose a minimalist vector art style. With this style, it doesn’t
matter too much if limbs don’t fully connect to the body, and I
can completely sidestep the problem of generating suitable
textures. The viewer’s mind can fill in the details much better
than any algorithm could.

By Tom Coxon

@tccoxon

“The idea for this

generator came

when I realised a

very simple

recursive algorithm

could produce a

wide variety of body

shapes.”

http://kirigami-beasts.com/kirigami/

112

While it is easy to tweak presentation to suit the generator in an
isolated procedural art tool, selecting contextual details to
complement a generator’s limitations does happen in full games
too.

Mossmouth’s Spelunky generates platformer levels in a grid of
rooms. Although it generally tries to ensure connectivity between
rooms, there are some room templates where walls can end up
blocking off the path. This happens with a low, but non-zero
probability every time a new level is generated.

Image courtesy of Darius Kazemi’s article on Spelunky’s level
generator (http://tinysubversions.com/spelunkyGen2/).

The dim red tiles in the middle are probabilistic tiles that can
randomly be either wall or background. This template is
supposed to connect the left and right sides of the room, but there
is a small chance that a vertical slice of these tiles will all become
walls, preventing movement through it.

Rather than trying to provide connectivity guarantees by either
constraining templates or complicating the generator, Spelunky
allows the player to use bombs to break through walls. Bombs

http://tinysubversions.com/spelunkyGen2/

113

simultaneously compensate for the generator’s inability to
guarantee connected rooms, while adding variety to the
gameplay.

Other times, when you’re lucky, the context for your generator is
coincidentally already set up to complement your generator’s
limitations... That was the case with Starbound’s procedural quest
generator.

In Starbound, villager NPCs offer players procedural, multi-stage
quests. The individual stages relate to each other causally, and
each stage can involve a variety of different tasks. It is more
sophisticated than Skyrim’s Radiant procedural quest system in a
technical sense, but it probably would not have been suitable for
use in a game like Skyrim.

An example of a whole quest an NPC might give the player is:
1. Take these seeds and grow me 2 tomatoes, 1 sugar, 1

corn.
2. Use 1 tomato, 1 sugar, 1 corn to make some relish.
3. A monster snatched my bread! Can you hunt it down and

bring it back?
4. I loaned my raw steak to a friend. Ask him for it back!
5. Finally, use all that to make me a hamburger, I’m

famished.

The system cleverly knows how items work together and fit into
quests, but the end result is… ridiculous. This quest sends the
player on a 5-part epic to build burger relish from scratch, and
combine it with meat and bread that it (unintentionally) hints
have already been digested!

We did end up introducing some extra rules to the generator to
prevent it doing some very stupid things. However, trying to
prevent all cases of stupidity would have either severely limited

“The system cleverly

knows how items

work together and

fit into quests, but

the end result is…

ridiculous.”

114

 its variety, or added a huge amount of complexity to something
that was already overly complex.

In a game like Skyrim, which has a serious tone, this quest
generator would have been canned. In Starbound however, NPCs
already have a whimsical and silly nature. Villagers occasionally
set themselves on fire with hand dryers; they vomit after using a
teleporter to move six feet; and they fall in love with other NPCs
and follow them around with goofy grins. It makes perfect sense
for a silly NPC to give a silly quest.

In the case of Starbound’s procedural quest generator, the
limitation was its complete lack of common sense. Thankfully the
generator’s context—silly NPCs—perfectly complemented the
generator’s stupidity.

If you have the luxury of control over the context of your
generated content, keep your generator simple, and turn its
shortcomings to your advantage. With the right approach, even a
design flaw can become a cool new feature!

115

116

By Heather Kelley & Audrey Moon

@PerfectPlum | @animalphase | http://www.perfectplum.com/ | http://loveme.computer/

Editor’s Note: We’ve tried to keep the raw, IRC vibe of this
conversation between two botmakers intact, and have only lightly
edited it in a few places, but we’ve also trimmed it for size. For the full
unedited interview, featuring lots of reflections on AI, futurology and
science fiction, check out http://www.procjam.com/seeds/

@indulgine, the Indulgent Engine, is a twitterbot by Heather Kelley
and Audrey Moon built with cbdq and tracery. @indulgine wants to
remind us all the different ways machines sense and feel pleasure.
Its slogans are embedded in SVGs inspired by mid-1960s
computer-generated art, particularly the work featured in the 1968
ICA exhibition Cybernetic Serendipity. We interviewed each other
about the creation of the bot!

[@perfectplum (PP)]: What appealed to you about the original
concept for @indulgine?

[@animalphase (AP)]: I was really interested in playing with
javascript and generated SVGs. We also found so much synergy on
the theme! From my past works and interests, even to my personal
domain (loveme.computer) we both had a thing for thinking about
pleasure, non-organic machines, AIs and other consciousnesses.

PP: Yes, and I didn't even KNOW that was your domain when I asked
you to collab, so it must have been some kind of weird mind meld
thing!

http://www.perfectplum.com/
http://loveme.computer/
http://www.procjam.com/seeds/
http://loveme.computer/

117

AP: I was also really excited to work with you! You seem really
cool, do a lot of cool work, and collaborating was a blast even
though the timing was weird. I'm curious what started this whole
project/talk/idea, since you concepted it before bringing me on?

PP: I was invited to speak on a panel at a Google Design
conference [1], along with some artist colleagues of mine from
Carnegie Mellon. And they wanted us to talk about humans'
changing relationship to machines/AIs/whatevs. But also a bit like
an artist's talk. My work in games is often about the senses, so I
started thinking about how that relates. And then decided that
instead of doing a standard talk I wanted to make a new thing.
I've been meaning to make a bot for about a year but there are so
many cliches in twitter bots and i held off because i didn't have a
good idea.

AP: Do you have any strong feels about senses of machines?

PP: Well the strong feeling i had is that if we expect they will be
sentient/intelligent, it seems really unethical and downright
stupid to not think about their sensory lives. Like why replicate
the false mind/body dualism? Also i have a categorical inability to
take anything completely seriously so i wanted to be a bit tongue
in cheek. I'm also interested in expanding human senses so
thinking about what senses machines will have that are different
from our "natural" senses is one avenue to that.

AP: Yes, I'm totally down for that tone! I tend to have a lot of
serious conversations and make a lot of important statements
with a tongue-in-cheek tone. I just… think it's fun to play with
concepts and enjoy them even while taking them very seriously
and treating them with sensitivity.

PP: Yes that! Like, humor doesn't mean, not serious?

118

AP: Yeah, totalllly. Obviously, it can be a challenge to handle things
with that tone and not everyone's down with it! So it's cool we vibed
that way.

PP: Humor hopefully disarms and gets past people’s defenses. Like, i
can say something silly and laugh about it but still 100% mean it. I
mean, I'm a game designer, after all. I play. Play is where we explore
and discover.

AP: We are all homo ludens after all lmao. Maybe we'll build
machina ludens.

PP: I mean GOD it would be awful to be an AI that was unable to
enjoy anything. And not permitted to feel anything. It basically
reminded me of our colonial perspective on any "other".

AP: Yes totally! I've also been rewatching TNG with my nbfriend and
Data's character arc has been a key focus for us! Like, finding their
own ways to enjoy things from their own perspective, tho still trying
to understand why humans enjoy things they way they do too.

AP: Data is good and pure and a great trans/nonbinary icon for us
lol. Like, so many similar struggles, having to have pronoun
conversations with the captain, making sure people use their real
name instead of pronouncing it incorrectly. And also like, Data made
a child and gave that child time to try on all kinds of different
appearances of species and genders to pick the one for them and it
was so wholesome.

PP: It's hard to imagine how forward-thinking that was at the time.

AP: But yeah, it's kinda interesting thinking about how that character
arc could be redone today, especially looking forward to what we're
talking about here in the project! There's like, example of the
enterprise crew encountering new lifeforms or accidentally

“...Data made a

child and gave

that child time

to try on all

kinds of

different

appearances of

species and

genders to pick

the one for

them and it

was so

wholesome.”

119

creating species of nanobots that achieve sentience and going
through many efforts to find a way to communicate to establish a
happy and mutually-beneficial relationship. Like, if an ai enjoys
being alive, how would it think about itself?

Find part 2 of the interview further on in this issue on page 130!

References
[1] https://design.google/span2017/pittsburgh/

https://design.google/span2017/pittsburgh/

Once upon a time, I tried to
write a traditional novel. I
spent years amassing a
manuscript of character
perspectives, world building
notes and epistolary
fragments that stretched to
more than 120K words. I had a
strong vision for the story and
the motivation to tell it, but it
never felt right as a whole.

Slowly, I realised it wasn’t the
characters or narrative I was
struggling with, it was a more
fundamental problem of
allowing the story to shape its
container. The structure I
wanted made more sense as
interactive fiction. Forcing it
into the constraints of a
traditional page-bound
experience was the root cause
of my frustration.

This realisation was
immensely freeing. It opened
up the possibility of shaping a
world around the characters
using the epistolary
fragments. I was originally
intending to discard. Through
emails, documents and fake
web pages, I could allow
readers to inhabit the
desktops and phone screens of
each character and see the
world through their eyes.

Things became frustrating
again when I realised I’d need
a lot more content to make the
fake desktop experience feel
continuous and cohesive. This
led me to wonder… What if I
didn’t have to manually write
it all? Could I generate
expressive text automatically?

By this long, strange, arduous
route, I discovered procedural
generation and generative
methods.

§

I had no idea what I was doing

120

By Mark Rickerby

@maetl

“It opened up the

possibility of

shaping a world

around the

characters using the

epistolary

fragments.”

121

at first. I vaguely knew that
generative grammars were
useful for creating sentences
with many variations. I
plugged several Ruby gems
into my app to try this out and
it worked!

I was really happy with the
initial results but soon started
running into problems. The
gems were unmaintained and
rough around the edges with
poor data structure choices
that led to errors and
limitations. Attempting to fix
them introduced even more
problems.

So, starting from scratch, I
wrote a tiny parser and
abstract syntax tree to support
basic template expansion and
ported all the existing

generators across. Now I had
my own grammar tool.
Something I’d never planned
to create but it was doing
exactly what I wanted.

As I used it more and more, I
fixed bugs, ironed out
edge-cases and added tests.
Eventually, I accepted this
project-inside-a-project was
moving far beyond mere yak
shaving. I refactored the
internals, named it Calyx
(http://calyx-rb.org), and
published it on Rubygems.

http://calyx-rb.org

I entered #NaNoGenMo and
used Calyx to make a weird
generated fantasy novel.
Writing grammars for a much
larger body of text surfaced
usability problems which led
to further improvements like
weighted probabilities,
memoization, and repeatable
random seeds. I even started
getting feedback on GitHub.
Other people were using it!

At this point, it might seem
like things were going pretty
well, but I wasn’t sure at all. I
started overthinking. I learned
about the history of generative
writing and witnessed the
extraordinary success of
Tracery and its inspirational
creative community.
Grammars were far more
widely used and studied than
I’d known. If I had understood
this at the beginning, maybe I
wouldn’t have needed to make
Calyx at all.

Was I wasting time
duplicating things that already
existed? Was it
procrastination, avoiding the
difficult effort of finishing my

 Novel?

Perhaps this existential
questioning is inevitable when
something that started out as a
means to an end becomes an
end in itself. In order to go
from confusion and self-doubt
to clarity and confidence, I
had to think about the balance
between what exists in other
tools and what Calyx uniquely
has to offer.

Calyx is distinctive in several
ways: its Ruby DSL, support
for weighted probability
distributions and the
expression syntax for
memoizing and cycling
through expansions.
Interestingly, results can be
returned as s-expressions of

122

“Perhaps this

existential

questioning is

inevitable when

something that

started out as a

means to an end

becomes an end in

itself.”

123

 expanded nodes as well as
plain strings, so in future,
there’s no reason why it
couldn’t evolve beyond text
into a general purpose tree
structure generator.

§

In programming, we have a
tendency to get far too hung
up on the problem of
‘reinventing the wheel’. It’s an
attitude that largely comes
from the imperatives of
commercial software. Yes, it is
undesirable to duplicate effort
by copying an existing library
or tool. It’s also one of the best
ways to learn.

This cliché also elides the
distinction between the
abstract concept and the
concrete reality. There are as
many types of wheel as there
are vehicles. Wheels need
different affordances for
different conditions. Context
matters.

In the process of struggling to
produce an enormously
complex and flawed creative
work, I developed a tool with

unexpected utility.

More importantly, I
discovered a whole new
community of people doing
fascinating and fun work on
the fringes of games, compsci,
art and literature. Thanks to
everyone for your
encouragement, enthusiasm,
and willingness to share.

124

By Ahmed Abuzuraiq

@ahmedabuzreq

Say you have a level in your game that you want to divide to regions,
only that you want to control which regions should adjacent or
nonadjacent. That might because you decided that if the player want
to go from a region A to another region C, she must first pass by B or
maybe like in the game RISK the adjacency between the countries
and continents influence the player’s strategy and you want to put
that in consideration when generating the maps on which the game
will take place.

I can help you in doing that! But I am going to ask you for two
things, first I want your level or map to have a graph representation.
(you know nodes and edges) let’s call this the Basic graph. So, if your
level is a simple rectangular grid then the cells will be represented
by nodes in the Basic graph and if any two cells are adjacent then we
will create an edge between their nodes. You can also use something
more fancy like the graph of a Voronoi diagram.

What I will do is that I will try to divide the Basic graph you give me
so that the portions of the Basic graph resulting from this division
are adjacent in the way that the Constraint graph describes.

Let me be more concrete here:
This is a Basic graph, a simple 5x5 grid.

125

This is the Constraint graph.

The result is a partitioning of the Basic graph where the regions
can each be “mapped” to one node in the Constraint graph (this is
called graph isomorphism, iso = equal, morph = shape)

126

Compare this with the Constraint graph and you can see the
mapping!
I bet you wondered: what’s with those cells you colored white? well
those are completely removed from the Basic graph, it just makes
everything easier if I am given the freedom to do that.
Also, you might have read the labels on the Constraint graph, well in
this case I am using the Constraint graph to divide the level to
meaningful regions, for example I wanted to put the boss region
before the ending region and a trap before the loot region.

Now I will show you more of this stuff, I will be using a Voronoi
diagram that I generate randomly this time and the Basic graph will
describe the adjacency between its cells. The result on the left and
the Constraint graph on the right. The cells colored with white are
removed from the Basic graph.
I will leave figuring out the mapping as a small mental exercise for
you!

127

 This last one is an island; the blue cells are water and are not
part of the Basic graph

Finally, you can use this tool and know more about it here:
https://github.com/abuzreq/ConstrainedGraphPartitioning

https://github.com/abuzreq/ConstrainedGraphPartitioning

128

By Mike Cook

@mtrc

Rogue Process is an action-hacking game about slow-motion hacking
and high-speed skyscraper parkour. You play as an acrobatic
freelance hacker who makes a living sneaking into corporate offices
and stealing their darkest secrets. Naturally, we procedurally
generate all those skyscrapers - this is a quick overview of how I go
about doing it.

When I was building Rogue Process' skyscrapers generator I wanted
a generator that had a lot of freedom. Some generators are
constructive, meaning they're methodical and smart enough to not
make mistakes, but these generators can also be a little bit more
predictable. Rogue Process' generator actually makes a *lot* of
mistakes - sometimes hundreds per building. But it's fast enough to
quickly restart and try again, and we have some code that makes
sure we don't fail too many times before bailing out and using a
safer option.

I also wanted a generator that was easy to extend and add bits to.
Spelunky's level generator uses level chunks made by its designer,
and glues them together like a jigsaw. This is great because adding a
new chunk to the database is simple, and adds loads of value
because it can be used in so many new combinations. I wanted
something similar, but Spelunky's approach didn't fit well with
man-made structures like skyscrapers. Instead, I went for something
a bit looser.

With that preamble out of the way, here's a quick overview of how
we generate buildings:

1. The Outline. We start with a rectangle of space we're going to put a
building in, but we rarely end up with rectangular buildings - the
generator either randomly bites chunks out of the edges, or it picks a
special template to build within, like a building with a sloped roof.

“Rogue

Process'

generator

actually makes

a *lot* of

mistakes -

sometimes

hundreds per

building.”

129

2. The Chunks. Chunks are like zones in SimCity, or the ghost of
where a room will go. They let us think about the flow and
makeup of a building without actually committing much detail.
The generator marks out rectangular shapes in the building (from
a small 1x1 room up to huge 1x5 or 4x3 rooms) using a catalogue
of shapes for this particular level. This means that Industrial
Sector buildings can have huge warehouses and maintenance
shafts, whereas little executive offices mostly have simple
corridors and meeting rooms.

3. The Rooms. In this phase the generator tries to find rooms that
fit into each chunk it placed in the previous step. Each room has a
specification that describes where it can be used: there's a bit of
code that checks if a placement is legal (for example, a CEO office
must be on the top floor); a bit of code that checks if a link
between rooms is legal (for example, it's not okay to build a
staircase up into the bottom of an incineration shaft); and a bit of
code that describes how to decorate the room. The decorators are
usually several bits of code connected together (I use something
called Delegates in C#) which means a decorator is like a buffet
for each room. Each room has a collection of generic decorators
(most want a floor, some will want windows) and then some
special ones (like placing a freight elevator or worker drones).

4. Sewing It Up. As the decorators work, they also place useful
markers to indicate things about the building. For example, they
build a map of the building that NPCs can use to walk around it,
and they mark out places where secrets might be hidden. The
final stage then goes over the finished building and adds all the
stuff that isn't specific to any single room: key cards, datacenters,
guards, security systems. Each of these placement phases has a
budget it can spend on adding stuff so we can make sure it
doesn't put too much of one thing in a building.

Each stage of this generator is really easy to interrupt and get

“Each of these

placement phases

has a budget it can

spend on adding

stuff so we can

make sure it doesn't

put too much of one

thing in a building.”

130

hands-on with: we can supply partly-finished outlines if we want our
building to have a special shape; we can add or remove chunks or
rooms to create custom building styles; and we can adjust budgets
for decorators and security. All of this means that adding a new city
sector is easy, and we can even work towards personal styles for a
particular corporation or building type.

So here are my two takeaways from this very brief algorithm
rundown: it's okay if your generator makes mistakes and restarts a
lot, especially if you're getting something good in return. And
flexibility is really good - try and build your generators with lists,
parameters, things you can tweak and control. The more handles
you have on the weird thing you built, the better you can direct its
weirdness towards the stuff you like the most.

Find out more about Rogue Process at www.rogueprocess.run

http://www.rogueprocess.run

Procedural generation has
been widely used in the
creation of virtual worlds for
games and movies, but it is
also a topic that has significant
applications in the design of
buildings and environments
in the physical world.

The field of ‘Computational
Design’ is an emerging
discipline in Architecture and
Engineering that uses
algorithms and computer code
as tools in the design process.
Instead of drawing out or
modelling designs manually,
computational designers
instead create computer
programs that procedurally
generate the final design,
based on a set of input
parameters. This allows for
the resolution of designs that
would be far too complicated
to create by hand and also
enables the input parameters
to be changed and optimised
throughout the design process
to produce the best possible
solution.

This is a design approach with
a long pedigree. The famous
Spanish Catalan architect
Antoni Gaudi applied a
generative approach to some
of his designs over a century
ago, utilising hanging chains
to model (upside-down)
complex branching systems of
vaults and arches that
naturally adopted highly
efficient structural forms. He
controlled the lengths of the
chains and the positions they
were hung from, but the final
geometry was generated by
the force of gravity acting on
this system and was,
consequently, optimised to

“This forces the

player to be fast

and keep

moving, or else

risk falling off

the platform.”

131

By Paul Jeffries, Structural Engineer and Computational Design Lead, Ramboll

@pnjeffries

132

resist those forces. These days
we have the advantage that we
are not restricted to the use of
basic physical processes like
gravity - with a computer we can
model pretty much any process
we can dream up – but the basic
philosophy is the same.

As an example from my own
experience in structural design,
the ArcelorMittal Orbit sculpture
by Anish Kapoor produced for
the London 2012 Olympic games
has a highly complicated
structure by most standards.
But, by describing the geometry
procedurally we were able to
generate the whole structure
from just a single spline curve, a
couple of numeric parameters
and a few

straightforward rules. We could
then control the whole geometry
from just those inputs, making it
easy to tweak the design and
collaborate with the artist to
produce an output that he was
happy with and that we were
confident would stand up.

While originally a fairly niche
approach used mainly on very
unusually-shaped projects, the
last decade has seen the rise of a
new breed of node-based visual
scripting tools that allow design
geometries to be defined by
connecting together pre-built
and custom code modules. This
has made these kinds of
generative techniques far easier
and more cost-effective and is
rapidly pushing computational
design more into the
mainstream, being used in the
design of everything from
pavilions and small art pieces to
skyscrapers, airports and sports
stadia. It is likely that soon
nearly all of the new
constructions you see going up
around you will have had some
element of procedural
generation involved in their
design.

133

One major difference in the
way in which procgen is used
in architecture vs games is
that while games leverage the
randomisation of variables to
generate a great variety of
different outputs, building
designers are ultimately
interested in producing only
one final structure and so the
input parameters to the
generative process are
carefully controlled by the
designer (it is often called
‘Parametric Design’ for this
reason). However as part of
an ongoing research project
we call ‘Dynamic
Masterplanning’ we are
leveraging random number
generation to apply a new
‘blue sky’ approach to building
design.

At Ramboll, we use our
engineering expertise to work
with architects to design
buildings and infrastructure
projects that will be
structurally viable, energy
efficient and sustainable. The
earlier we can get involved in
a project the greater a positive
impact we can have, as the
overall arrangement of a

building will have a major
influence on how efficiently it
can be constructed and
operated. Typically, only two
or three possible building
arrangements will be
considered in any detail in the
design process, and often
before engineering advice is
sought.

This can lead to suboptimal
designs and major setbacks
later on when it is found to be
impossible to make the
building meet requirements.
However, by utilising
procedural generation it is
instead possible to create
thousands of different viable
configurations for a particular
site’s constraints. By
automating and integrating

134

engineering analysis into this
process we can then test these
different options and evaluate
them through a variety of
criteria. Many of the algorithms
used in this will be familiar to
games developers; we use ray
tracing to check sightlines and
evaluate daylighting throughout
the year, pathfinding routines to
determine shortest routes and
travel distances across the site,
voronoi diagrams to help assess
loading distribution and so on.
By doing this we can thoroughly
explore the ‘design space’, trying
out hundreds or thousands of
potential options and allowing
us to make better-informed
design decisions based on a body
of hard data.

135

Editor’s Note: This is a chat between botmakers Heather Kelley
and Audrey Moon. In this second part of the interview, they discuss
botmaking with Tracery, creating together, and exploring
representations of the future. For the full interview, see
http://www.procjam.com/seeds/

[@perfectplum (PP)]: What wisdom could you give other bot
makers who want to work with tracery SVGs?

[@animalphase (AP)]: well, i know @v21 is working on CBDQ and
fixing/improving things frequently, and it looks like @GalaxyKate
is working on new versions of the language. my main tip would
be, just play with tiny pieces of the SVG at a time to get a good
sense of how the server will be happy to render your SVG. don't
like, do it all locally and expect it to work when you paste it in!

PP: hehe. word.

AP: keep talking to the system you're working with :) also, i'd say
look a lot of code @v21 has done because there's a lot of really
clever implementations for getting things like random numbers

PP: and in our case, reach out to the makers when it makes sense.
i mean, i think everyone could do that, they are both very
approachable

By Heather Kelley & Audrey Moon

@PerfectPlum | @animalphase | http://www.perfectplum.com/ | http://loveme.computer/

“my main tip

would be, just

play with tiny

pieces of the SVG

at a time to get a

good sense of

how the server

will be happy to

render your SVG”

http://www.procjam.com/seeds/
http://www.perfectplum.com/
http://loveme.computer/

136

AP: yeah!

PP: like you actually did find some bugs!

AP: haha yeah! and v was super good to get right on things and
fix them, or at least to investigate and offer insight for a
workaround

PP: ❤

AP: it's good to work within a good community like this <3

PP: agreed, that was actually one of the main reasons i wanted to
do a bot. there's the technical and artistic reasons, and the social
reasons

AP: yeah, those two things are what keep me here in this space :)

PP: what were some of the creative challenges in interpreting the
visual inspiration material (cybernetic serendipity exhibition)
into an algorithm?

AP: ah! well, i think i was just trying to follow the same mindset
of serendipity, which was a little bit nerve-wracking at first
because we were working on a short timeline and that's not the
best time to just play and see how things go lol. BUT the theme of
the project was finding ways to let code- or machine-generated
systems determine their own choices and paths in life, and the
reference material was about that too. so, i had a bit list of
elements to focus on, and kinda worked through those ideas with
code implementations until we found something harmonious,
something that frequently generated interesting results naturally
from the code and that we could both look at and say "hell yeah"

“...the theme

of the project

was finding

ways to let

code- or

machine-gener

ated systems

determine

their own

choices and

paths in life...”

137

AP: so, that's still kind of that same mindset of creating something
digital to appease our tastes, but, i was trying to find a bit of that
balance of, playing with different kinds of code that tended to
work a particular way, and find the bits of code that vibed with
us for a mutually-agreeable relationship of harmony. but it was
also done under a short timeline, so these decisions were also
forced into a schedule that needed an answer fast! i think it's
interesting because we came up with something that almost looks
like documentation, so it's kind of like the digital processes are
doing what they want, and what we get is the human-readable
documentation translating their wants?

AP: that's, kind of a feel i get from it. what were your thoughts
assembling the references, and collaborating as we worked
through it?

PP: well i was nerding out of course. it was easy on my side, just
going down the rabbit hole, starting with the web site that
someone is compiling with all the online references [1]. at first
when we started i didn't have that exhibition in mind, and i can't
remember when/why it occurred to me. But it's also about that
feeling of being both "computer art' and very analog. since there
was a lot of sculptures, and plotter stuff in that show. in fact stuff

“The system cleverly

knows how items

work together and

fit into quests, but

the end result is…

ridiculous.”

138

that looks really contemporary now, with so many current
creative coding projects meshing those old techniques with robots
and AIs. And I also like the optimism of that time. When I told
Golan about my topic, he made reference to an article that had
just come out about how your sex bot could kill you. And while
that's true on one hand, it's like, there's already a shit ton of
people thinking about these dystopias, so few take any kind of
hopeful stance now. And, without being a pollyanna, I wanted to
at least represent that playful and hopeful side of things.

AP: yeah. also like your toaster could kill you and your car could
kill you and, well, like you said we're gonna be surrounded by AI
so i guess it'll be important to make friends with them!

PP: Yeeeeep.

AP: but yeah, i agree there's so much dystopia speculative fiction
out there and to me it is more interesting and useful to focus on
positive speculative fiction. like, "hmm maybe some things seem
tricky now so what are some ideas about moving forward"

PP: Also, all these arguments still "other" the bots and act as if
there is not some kind of equally dangerous/problematic human
equivalent. It's again colonial and sexist. Only the most
privileged of folks are worried about being murdered by their
personal bot. Most of us are already worried a lot more about the
humans we've already got all around us.

PP: So yeah, i want humanity to actually put some thought and
action into how we might build a positive scenario! For the bots,
and so for us too!

References
[1] http://cyberneticserendipity.net/

http://cyberneticserendipity.net/

139

By Davide Prati of NoobStudios

@noob_studios | https://www.facebook.com/noobstudios/

Sphere components that
generated points inside of them

and made convex meshes.

https://www.facebook.com/noobstudios/

140

Leaves were made by generating a
random convex hull inside a cube,

and the trunk was created by
making a convex mesh out of

various circles.

141

142

To generate these, points were
generated inside a cube and

turned into a convex mesh that
was then flattened.

143

By James Ryan

@xfoml

At its advent, the general-purpose computer was already being
envisioned as a mechanism for procedural generation. Writing in
1843 about Charles Babbage's Analytical Engine, Ada Lovelace
proposed the notion of computer music: "the engine might compose
elaborate and scientific pieces of music of any degree of complexity
or extent". When the computer fully arrived the next century, Alan
Turing promptly suggested, in 1949, the inevitability of computer
poetry. The current earliest known project in procedural generation
is Christopher Strachey's love-letter generator of 1952, and several
more followed in the ensuing decade. Thus, procedural generation
by computer is as old as the computer; procedural generation, more
broadly construed, is probably as old as the procedure.

I spent the summer of 2017 excavating materials pertaining to the
forgotten early history of expressive computation, which turned up,
among many other things, a series of popular visual depictions of
early generative systems. These illustrations appeared in
newspapers, magazines, and other publications in accompaniment
of sensational articles puzzling over the latest developments in
procedural generation.

For your enjoyment, I present here my collection of popular
depictions of early procedural generation. In all cases, these
illustrations were published anonymously, though some are signed
by the artists. Below, you can find brief descriptions of each image,
along with citations for where I found them (though note that in
some cases the images were published in multiple sources and likely
originated in a press release or newswire package). Beyond the
anthropomorphism, note the conflation of hardware and software
that characterizes nearly all these images. This misconception was
also present in the source articles containing the original
illustrations, where generative computer programs were frequently
referred to by the name of the computers on which they were

“For your

enjoyment, I

present here

my collection

of popular

depictions of

early

procedural

generation.”

144

implemented (e.g., 'TX-0' for SAGA-II).

This image appeared in an article highlighting recent
developments in procgen, including Strachey's love-letter
generator and early computer music. The robot's tag reads
'electronic author', and it's being placed in a drawer marked
'unfinished business.' Story generation would emerge four years
later, with SAGA-II. Source: The Indianapolis Star, Jan. 23, 1956, p.
10.

145

Here is a lovely portrait of SAGA-II, the first major project in
procedural generation. This MIT system wrote screenplays in the
TV-western genre and was featured on a CBS television program
called Tomorrow. Source: Binghamton (New York) Press and
Sun-Bulletin, Oct. 22, 1966, p. 15.

146

An alternative portrayal of the screenwriter SAGA-II positions it,
curiously, at a typewriter. Source: The Pittsburgh Press, Oct. 26,
1960, p. 43.

147

Rather than a depiction of an expressive system, this titled
illustration captures the sheer processing power of computers, a
feature that naturally captivated the mid-century imagination.
Source: The Lincoln Star, Oct. 23, 1960, p. 48.

148

One of the first expressive systems to receive widespread media attention was
AUTO-BEATNIK, an early computer poetry generator developed by engineers at the
California-based Librascope company. This image depicts the smug computer poet
in a publisher's lobby, waiting patiently to sell some of its copious outputs. Source:
Binghamton (New York) Press and Sun-Bulletin, Feb. 4, 1962, p. 46.

Multiple contemporaneous sources claim that a Librascope engineer actually read
some of AUTO-BEATNIK's generated poetry at the Venice West Cafe, a popular beat
hangout in Venice, California. This image commemorates the event in a humorous
way. Source: Binghamton (New York) Press and Sun-Bulletin, Feb. 4, 1962, p. 46.

149

Here is another image depicting the public reading of
AUTO-BEATNIK's poetry. Of course, the mainframe itself would not
have been lugged along to Venice. Source: Honolulu Star-Bulletin,
Apr. 22, 1962, p. 12.

150

This illustration accompanied a faux interview with the computer
poet that appeared in Librascope's company newsletter, the
Librazette. Source: Librazette. July–August, 1962 (Vol. 9, No. 11),
p. 11.

The inherently funny notion
of a robot with writer's
block is shown here. Source:
The Sydney Morning
Herald, Aug 5, 1962, p. 77.

151

This illustration appeared in an article about the increasingly real
prospect of computer art. Source: The Observer, Apr. 21, 1963, p. 30.

152

Who then is the computer poet's muse? This New York Times
illustration offers one captivating answer. Source: New York
Times, Dec. 4, 1966, p. 63.

153

This striking illustration does not pertain to procedural generation
or expression, but rather one supercomputer's sheer capacity for
data. Incidentally, that machine, ILLIAC IV, was the descendant of
the eponymous author of the most famous early work in computer
music, "Illiac Suite" (1957). Source: ILLIAC IV (marketing leaflet),
1974, p. 9.

124

