
Seeds

Issue 1

Jonathan Pagnutti
Gillian Smith
Tommy Thompson
Jonas Delleske
Balint Mark
Joao Oliviera
Marek Skudelny
Lena Werthmann
@TearOfTheStar
Oliver Carson
Luke O’Connor
Todd Furmanski
Sam Geen
Isaac Karth

Contributors:

Editor: Jupiter Hadley - @Jupiter_Hadley
Production Assistant: Chris Bowes - @contralogic

David Murphy
Ciro Duran
David Morrison
Eggy Interactive
Davide Aversa
Kevin Chapelier
Ahmed Khalifa
Max Kreminski
Gabriella A. B. Barros
Ahmed Khalifa
Tim Stoddard
Martin Černý
Jo Mazeika
Kate Rose Pipkin

Aidan Dodds
Ex Utumno
Afshin Mobramaein
Scott Redrup
Mark Johnson
Kate Compton
Johanthan Pagnutti
Jim Whitehead
Mark Bennett
Niall Moody
Katie Compton
Gregoir Duchemin
Dave Griffiths
Rune Skovbo Johansen

Organisers:
Michael Cook, Azalea Raad

Press Officer:
Jupiter Hadley

Art By:
Khalkeus, Tess Young

Speakers:
Gabriella Barros, Joris Dormans,
Becky Lavender, Mark Nelson,
Emily Short, Tanya Short, Adam
Summerville, Jamie Woodcock

Thanks to: Heidi Ball, Simon Colton, Mark
Nelson, Blanca Pérez Ferrer, The
Metamakers Institute, Falmouth University,
Sekrit Inc. and everyone in the PROCJAM
community

Cover art by: Kevin Chapelier

Some header/Footer paterns from
Eduardo Lopes’ Procedural Fabrics
Generator:
https://eduardo.itch.io/procedural-fabrics

CreditsCredits

1

https://eduardo.itch.io/procedural-fabrics
https://eduardo.itch.io/procedural-fabrics

2

The ProcJam is not like most other game jams. This jam is aimed at
making procedural generation accessible to more people and to show
off projects that are pushing the boundaries of generative software.
This jam is easy to enter, laidback, and fun to be apart of. We are
building a community of friends and peers across disciplines all
interested in procedural generation.

This game jam takes place across nine days, including two weekends.
You can enter anything you’d like - art, boardgames, tools, games,
anything you can think of, as long as it has something to do with
procedural generation/random generation/generative software, ect.
You can even take an existing thing and add some generative magic to
it for the jam! If you start before the jam or want to finish the jam
later, that is fine too.

We have a kickoff day at the start of the jam, taking place in Falmouth
this year, where loads of awesome speakers are going to talk about
procedural generation. This unconference is livestreamed that day, as
well as put up online to be watched in the future.

The ProcJam is happening as a part of Metamakers Institute’s ‘Games
as Arts/Arts as Games’ festival.

This Zine was made by the ProcJam community. We hope you enjoy it!

ProcJamProcJam

Make Something That Makes Something

Music is weird.

Once upon a time, I did a lot of music theory. I actually ended up
with a music performance minor rather than major because I took
two extra classes of music theory rather than the required music
history classes of my undergrad (nerd alert). My final project as an
undergrad was a music generator, which I wrote in C and only exists
on a rapidly aging desktop computer collecting dust.

One of the wonderful things about procedural generation is that if
we can encode a theory into the computer, we can have a computer
generate endless examples of stuff that follows the theory. Even
better, if we line up our metaphors, the magic box can present
something in terms of something else.

So, the question at hand: how is music like a spring?

When you push or pull on a spring, you add tension to it. Let go, and
the spring releases that tension. I'm sure this tension has a special
name, but I only ever took freshman physics. Music carries and
releases tension too, according to a music theory called Functional
Harmony. But, first, we need to take a whirlwind tour on sheet
music.

Ok, so collections of notes played at the same time (called chords)
can get special labels based on their lowest note in a scale. The cool
thing is that those special labels can tell us which chords carry lots of
tension they want to release, and which chords are less stressful.

How is Music Like A Spring?How is Music Like A Spring?

By Jonathan Pagnutti

3

They can also tell us how to go from chord to chord to increase and
decrease tension.

This chart was ruthlessly stolen from Dmitri Tymoczko's 'A Geometry
Of Music'. Annotations are mine. The degree symbol by the vii is the
same as the (dim) by the vii in the earlier picture.

So, then, we can push and pull our spring and play chords at various
tension levels. In theory, as the spring expands and contracts, we'll
get 'pleasing' chord progressions. There is a bunch more to consider
to turn these roman numerals into sound, but the raw idea comes
from this theory. I encoded this theory, and using P5.js made a tiny
little generative audio prototype.

4

Music generation prototypes don't make the best screenshots.
You can try it out for yourself at
http://www.tinyai.net/projects/musical_springs

Now, why make this? Music, even generative music, seems to be
tethered to events or notes, but it doesn't have to be. Music is
just as pervasive and continuous as, well, physics. I grounded
this tension-release model in Functional Harmony because I
know it, but music generates tension in so many other ways.
With this tension-release model, we're starting to get at musical
velocity. And if that has a nice metaphor, maybe we can
describe a collision musically?

Music is more than the notes on the page. Music is weird.

5

Why Do We PCG?Why Do We PCG?

By Gillian Smith

I want to talk about “replayability” and meaning and depth. We
often talk about how PCG can give people different experiences each
time they play. We are drawn to the promise of infinite (or at least,
really huge) amounts of content to explore. And then we, inevitably,
are disappointed by the infinite: there’s a lot of it, but it all feels so
similar. It is unrealistic to hope for constant, infinite beauty.

Why do we replay games? Why do we re-read books, or re-watch
movies, or re-listen to music?

We don’t hope for books to be infinitely long. Sometimes we want to
hear more about the characters after reading a favorite novel, but
ultimately it’s probably for the best that we don’t. It’s better to yearn
for and imagine what happens next. Stories that have potential
futures have a power to them. Would an infinitely long story, where
our urge to know what happens next is always fulfilled, be enjoyable
to read forever?

We don’t need a beloved movie to have different content every time
we watch it in order to find it fulfilling. With some movies, there is
satisfaction in finding things we missed earlier viewings: elements of
foreshadowing, interesting background character behavior, and
clever cinematic tricks. Sometimes we find our experience of
watching the movie has changed, because though the movie’s
content has remained static, we have changed as viewers and are
reacting differently to the same material.

We don’t ask composers to write music that adapts in realtime to our
mood. We instead work to build and curate playlists (though
sometimes with AI assistance) for a huge variety of contexts, from
needing motivation for a bleary-eyed 6am workout to setting the
desired ambience for an intimate dinner party. There is a
satisfaction to finding unexpected new music while putting in effort

“We are drawn

to the promise

of infinite (or

at least, really

huge) amounts

of content to

explore.”

6

to explore an enormously varied space of all the potential music
in the world.

We are happy to revisit the same piece of art multiple times, if it
has sufficient depth. And we are happy to put in effort to
explore enormous spaces, when the act of exploring is satisfying
and comes with the promise that sometimes we will find
extraordinary beauty in that space. We put in effort to find and
re-engage with art that we find emotionally resonating.

So what does focusing on this notion of emotional resonance
mean to me when it comes to content generation in games? I’m
not entirely sure yet. Maybe it means creating games that
acknowledge and meaningfully engage with the machine’s
ability to create huge amounts of similar content (something
that I think No Man’s Sky is incredibly successful at) in a context
that resonates with the player, instead of presenting
machine-generated content as an infinite number of individual
levels that become boring over time. Or maybe we could try
writing new kinds of generators that aim to create smaller
amounts of content that are individually more meaningful to
players, maybe content or even games that have multiple layers
or depth and complexity.

The joy that comes from hitting the generate button over and
over to see something new is intense but fleeting, and then the
joy turns to boredom, frustration, and disappointment. I want to
stop thinking about content generators as being powerful
because they can create a lot of things, and start thinking about
ways to harness them for creating new kinds of emotionally
resonant experiences.

“Maybe it means

creating games

that

acknowledge and

meaningfully

engage with the

machine’s ability

to create huge

amounts of

similar

content...”

7

“While the core

game worked,

there was still

a lot to be done

to ensure the

stability of the

systems and

the validity of

the content it

makes.”

Sure FootingSure Footing

By Tommy Thompson, Supreme Science Overlord, Table Flip Games Ltd.

@GET_TUDA_CHOPPA

Hello to our fellow Procjammers
- or is that Seeders? I'm really
pleased to be able to report back
on the current status of Sure
Footing, which you may recall
was the focus of a talk delivered
by yours truly on behalf of Table
Flip Games at PROCJAM in 2015.
In our talk (which you can find
on YouTube), I gave an overview
of our infinite runner that
transformed from a small
research project into a
fully-fledged game that we
planned on launching. At the
time we had just finished
building our core procedural

generation framework: a system
derived from research in
platforming games by my peers
in the academic community.
While the core game worked,

there was still a lot to be done to
ensure the stability of the
systems and the validity of the
content it makes. Ultimately we
still needed to trust this thing to
run for hours at a time without
breaking, but also to create
platforming levels that aren't
going to prove impossible for
players to traverse.

So here we are a year later and
the game has come a long way.
Firstly, we've completed the
generative framework which
now allows us to 'swap out'
different PCG systems on the fly.
Our game has two 'tiers' of PCG:
one which considers the actions
the players will be forced to
make to survive and one which
translates that action sequence
into a playable 'sprint'. The real
trick is that we can build
multiple generators that look
after each tier - and we now
have almost a dozen generators
either in development or
currently in the game itself.

Given this is partially a research
project, we've been testing and
experimenting with the

8
=

framework since we finished
it and presented the game at
the playable experience track
of the 2015 conference in
Artificial Intelligence for
Interactive Digital
Entertainment (AIIDE). We
subsequently published our
first full academic paper at the
Procedural Content
Generation workshop at the
1st DiGRA/FDG joint
conference in August of 2016.
We write about how our
system works as well as
quantify how expressive and
flexible it is. This led to us
adopting a large number of
metrics in the game that allow
us to effectively measure
content as it is created and
build an understanding of
how long, how intense and
how varied each level will be.

The research hasn't stopped
there. We continued to devise
new geometry generators
reliant upon genetic
algorithms to create new and
unique interpretations of the
action space. Also, we're using
our level metrics combined
with player testing to see if we
can learn how to

'fit' the generative system
around a player’s
performance. There are now
over 20 parameters in the PCG
system that allow us to define
the starting difficulty of the
game. We're keen to see if we
can learn about our players to
create new difficulty settings
dynamically that will play
against their weaknesses but

without being unfair. We
have a long way to go before
any of this is complete, but
hopefully we can give you an
update next year!

But enough about the
research: what about the
game? Well, why don't you
see for yourself! Sure Footing
launched in early-access on
the itch.io Refinery in

“We're keen to

see if we can

learn about our

players to create

new difficulty

settings

dynamically that

will play against

their

weaknesses...”

9

September of 2016. Our plans
had always been to launch the
game either late in 2016 or early
in 2017 but new research ideas
as well as new gameplay ideas
continue to emerge the longer
we work on it. We knew that if
we didn't launch the game soon
then we never would - and given
how popular it is when we take
it to festivals in the UK we would
be mad not to. As such, we've
launched the game in
early-access and are continuing
to add new gameplay modes and
features every month while
talking with our players to take
on their feedback.

It's been a crazy time for us
since launch and while our
community is small right now
they have been overwhelmingly
positive and supportive of our
work. We're now looking not
only to start migrating our work
from the research build (aka the
Branch of DOOM) into the public
playable version, but also to run
player-testing research with our
community.

If you want to know more or get
yourselves an early access copy,
head over to:
tableflipgames.itch.io/sure-footing

“We knew that

if we didn't

launch the

game soon

then we never

would...”

10

Sector A23

Imagine a world that only exists
when you see it. Whenever you
look around you see something
completely new coming to life.
This is the world of Sector A23.
A beautifully generated cave
system, filled with alien plants
and mysterious creatures, giving
room for endless exploration.
Anything you see has never
existed before and will stop
existing as soon as you dare to
look away.

This student project started with
the simple idea that the world
only exists when you see it. To
build this game we started out
creating an algorithm that
would generate our cave
system. Simultaneously we
developed alien looking plants
and strange creatures to live in
this cave. Then we enhanced
our algorithm to place those
entities in the world. The world
generation was also built in a
way that we can add new world
parts seamlessly to an existing
world. So all we needed to do
was delete the parts of the game
world that the player does not
see and generate a

completely new piece of world
when the player is about to
turn.
And thus the world only exists
when you see it.

Summarized we successfully
created a highly confusing
game. The evil thing is that the
player doesn’t see when the
world changes. And since
everything looks alien and new
the player doesn’t even
recognize that something is
missing when he turns around.
The change becomes part of the
world and the world without
orientation is accepted.

By Jonas Delleske, Balint Mark, Joao Oliviera, Marek Skudelny, Lena Werthmann

Sector A23

Procedural world generation at run-timeProcedural world generation at run-time

Try the free game:
https://wysiwyg.itch.io/sectora23

11

Maze generation is something every disciple in the field of
procedural generation goes through at some point. The concept is
extremely easy to understand (there are some excellent articles by
Jamis Buck and Walter D. Pullen)*, but it is an endlessly powerful
tool in the world of procedural generation. While tinkering with
maze generation, an idea came to me: that one can use simple binary
masks to generate a grid based maze inside it.

From this idea, the way to generate an alphabet was born. One
makes/generates a binary mask (0\black - can't maze, 1\white - can
maze here) like this:

... and generate small mazes using this mask. The result will look like
this:

Because this maze generation is grid based, one can remove the
corners, and this will result in a generated alphabet:

“...that one can

use simple

binary masks to

generate a grid

based maze

inside it.”

An Easy Way To Generate

Fictional Alphabets

An Easy Way To Generate

Fictional Alphabets

By @TearOfTheStar

12

As shown here, only most limited of masks do not have
variations.

So here's how to do it. My grid based mazes are generated with
1px cells, mostly because I like pixelart, so they look like that.
However, one can generate them in any way one would like,
even with bitmasking/curves etc.

* http://weblog.jamisbuck.org/ ,
http://www.astrolog.org/labyrnth/maze.htm

13

The lure of procedural
generation is an attractive one to
game developers and game
players alike. A game that can
generate assets eases the
amount of content developers
have to create, and adds
potentially limitless variance to
aspects of a game.

Procedural content could be
almost any part of your game,
2D, 3D, Audio, AI,Level Design,
all to varying degrees. Let’s
examine, probably my favorite
aspect of procedural generation,
3D world design, and how this
links into level design. The first
thing you’ll need to figure out is
what defines a level? Lets look at
an example from one of my

 current projects.

Level Design in Dispatch!
I’m in Pursuit!

Dispatch is a pet project of mine,
it’s what first got me into using
procgen for 3D models. The
gameplay in Dispatch sees
hotshot rookie cop Lt Blaze
cruise the city, stopping crimes
and getting in hot pursuits in a
future tech jet bike. Various
buildings are littered around the
city, criminal hideouts, raidable
buildings, such as jewelry stores,
and neutral buildings.

So the gameplay sees various
heists happening in buildings
throughout the city, and Lt Blaze
has to race to each point and
intercept getaway drivers before
they escape to a hideout. To
create this city procedurally, we
need to generate a road
network with traffic, a
pavement for pedestrians.
different building types, and
navigation data for the AI. Phew
that’s a whole bunch of things!

By Oliver Carson

@OhCarson | ocarson.itch.io | www.sizeablegames.com

In(finite) Content:In(finite) Content:

Level Design for Games with Procedural GenerationLevel Design for Games with Procedural Generation

“Procedural

content could

be almost any

part of your

game, 2D, 3D,

Audio, AI,Level

Design, all to

varying

degrees.”

14

The Tech Part

The road network is core to
the gameplay of Dispatch, this
can be simplified down to a
series of connecting lines.
The first thing we need to do is
create these lines in 2D. One
way to do this, is to distribute
random points in a 2D space
of a set size, with each point
having a radius where no
other points can be placed.
These points are then
connected using a Voronoi
diagram. The voronoi
diagram creates 2D polygons
out of these points. We can
use these polygons to define
the world geometry.

Each edge from these
polygons, in gameplay terms,
defines the road. We need to
“grow” the road geometry
from these edges. If we copy a
polygon and shrink it we can
create geometry for a road,
however, we have to shrink
this polygon down in a
specific way, a standard
scaling operation would look
wrong, we need to bring in
each edge from the island
towards the center, and

discard overlapping line
segments.

From there we’ve got enough
data to begin extruding the
road geometry with triangles.

We can create additional
polygons to create further
details, such as a pavement, a
building or a field. Lets think
about each polygon being an
area. We could perform
additional operations in the
innermost “building” area to
add more detail. Here we
subdivide the building area
and use these subdivisions to
create separate buildings and
back alleys. Each building is
then assigned a type, such as
jewelry store, or a criminal
hideout.

As a benefit to creating all
these lines, we can store them
and use them for pathfinding.
We also know the context or
each area, so we can put cars
on the road lines, pedestrians
in the pavement area, back
alleys might have more
undesirables.

“...it’s worth

questioning if

procedural

generation is a

good choice for

certain assets.”

15

The biggest issue with procgen is
also it’s biggest strength,
variance, creating a generator
to make buildings in the city
could be as simple as make a
cube with some windows on it,
but this could get pretty samey,
creating large amounts of
variance in any generator will
undoubtedly take a longer time
to code, it’s worth questioning if
procedural generation is a
good choice for certain assets.
Getting an artist to work on
some discreet aspects may be
the better choice for some of
your content. It may take

significantly less time too. As
someone who has spent a lot of
time going down the rabbit hole
of procgen, sometimes it’s worth
standing back from your work
and asking, would making a
generator for this content be
worthwhile to the player? Can
I afford the time? I feel procgen
is generally best used for level
design and random events, but
people are making some
amazing stuff in everything
from, 2D, 3D, audio, and even
narrative out there, so focus on
what's important for your game
and audience.

Procgen is a powerful thing, but
is just one of your many tools to
further your vision. Use it wisely
and appropriately.

Please look out for
Cyglide a procedurally

generated, cyborg
animal hang gliding
game in winter, and

Dispatch! I’m in
Pursuit next year.

When To Use Procedural Generation

16

We, as humans, are great at
inventing new things to reach
the unreachable. Boats, planes
and rockets are all pretty good
examples, but so are tanks of
compressed air and crampons.
Even something as simple
rope is a pretty handy tool for
getting someplace new.

Why then, when making
games, would we start with
the rope, the plane and the
rocket, and then start creating
worlds that need them? If all
you have is a hammer, every
problem looks like a nail.
When it comes to procedurally
generated levels, it can take a
lot of effort to make sure the
levels that pop out of the
algorithm are traversable
using the tools at hand. In
other words, what we end up
aiming for is a generator that
outputs nails of different
shapes and sizes. Which is
kind of boring.

What if, instead of trying to
ensure that your generator
only pops out levels that are
traversable given a set of
movement mechanics, the

movement mechanics were
designed around the
generated worlds? Why not
make our worlds first, then
figure out a way to explore
them. Better yet, make our
worlds then allow the player
to invent new ways to explore
it. A more genuine experience
of exploration awaits!

This opens up all sorts of
possibilities, and allows us to
generate more natural worlds.
Worlds that just emerge from
the universe inside our
computers. Worlds that don’t
have the artificial limitations
that gameplay may impose.
Worlds that are as novel, and
as unknown as as our own,
and that beg us to consider
what is over the horizon, and
how we might get there.

“...it can take a

lot of effort to

make sure the

levels that pop

out of the

algorithm are

traversable

using the tools

at hand.”

Grow Your WorldsGrow Your Worlds

By Luke O’Connor

17

Forska has been my current project for the last two Procedrual Game
Jams, and for reasons implied below, will be on my schedule for 2016
as well. The project can be described as a navigable, procedural
landscape painting, where a user simply clicks on a static image to
move, and the “painting” updating to that implied location. I mean to
talk a little about why I developed the project, and go into a little bit
of detail on how a few of its aspects work.

A Sketchbook, Portfolio, Toolbox, and Zoo

Forska (Swedish for “Research”) is meant to be a place where I can
implement different procedural techniques and see how they play
together, without having to worry too much about a specific goal.
Specific goals can be achieved later in external projects, where I can
transplant code fragments and modify them to a more specialized
end. Within Forska itself, each technique has a demonstrative effect
on the virtual space, and I try to generalize it to make
transplantation to a different project as easy as I can. Having them
all in one place can be very handy as well. A lot of my
experimentation with simulations and agent behaviors, for instance,
proved slow going I realized I needed an interesting enough
environment for the agents to inhabit, sense, and react to. Terrains,
agent behaviors, graphical effects, and other dynamics can be hard
to develop in a vacuum, so placing them all into one project seemed
like the logical project for an ongoing coding jam.

I use Unity as the primary engine, which has helped me port code to
a variety of different platforms, as well as allowing me to view
parameters and world states easily. A certain amount of traffic
between the Processing java libraries and my own venerable C++
codebase has also been known to happen.

Various versions of Forska can be found at
https://tfurmanskigmailcom.itch.io/forska

“Terrains, agent

behaviors,

graphical

effects, and

other dynamics

can be hard to

develop in a

vacuum....”

ForskaForska
By Todd Furmanski

18

Navigation

The idea behind Forska’s navigation is quite simple – you click
on the image, and you’re teleported to where you clicked. In
many ways this calls back to adventure games like Myst, but
instead of having a limited database of images, I take the
appropriate image using a virtual camera and a 3D space. It’s a
simple matter of raycasting from the mouse cursor to the
corresponding point in the landscape. I realize that many VR
experiences have adopted a similar approach. This idea of “click
to move” came from a need to quickly explore large virtual
spaces, without slogging back and forth, or rocketing too fast
past small destinations. With the paradigm Forska uses, taking a
single step or walking a mile can both be done in one click. This
approach has also proven to work very well with touchscreens
and similar interfaces. I have watched far too many people
struggle with a game controller while exploring a space at 24-60
frames per second. My countless hours of gaming in my youth
have given me the dexterity to use a joystick or gamepad – many
people have not had this tacit education. I wanted to experiment
with removing this barrier of entry to exploring a virtual space.

Non-Photoreal Rendering

The painted effect I give each rendered image starts with a
typically 3D rendered camera shot, which then has a heavily
modified blur shader applied to it. A separate, “noisy” texture
input gives the blur a series of offset distances – the final result
mimics brushstrokes, and it is this image input that controls
stroke size, direction, etc. I tend to blur more in the midground,
keeping the fore and backgrounds relatively detailed, since a
faraway point of interest can be the same relative size on the
screen as an object close to the camera, and faraway features
can be obliterated if one simply does a “more distance = more

19

blur” calculation. Making blurs proportional to the sine of the
distance can be helpful! In keeping with the “sketchbook” approach,
I’ve developed several methods that mimic styles like oil paints,
pastels, woodcuts, mosaics, and the like. Other procedural elements
like terrain generation and dynamic skies give these shaders good
subjects to work from, and can give even identical scenes their own
sense of character.

Future

I mean to continue adding to this menagerie of techniques, as wells
as methods to explore and view them. I’ve done a few smaller works
using components from Forska, and I mean to do more, each with a
mixture of handcrafted and procedural components. I do not mean
to add things like narrative, puzzles, encounters, or real time
graphics to Forska itself, but I certainly plan to develop them for a
variety of the project’s offspring!

“...I mean to do

more, each

with a mixture

of handcrafted

and procedural

components.”

20

Simulations

I am an astrophysicist, and I
make universes, I tell people.
Or... well, maybe. I suppose
it's about the story I want to
tell. Let me tell you a story.

Human history is often
landmarked by the machines
it creates. In earlier times,
binary stars Mizar and Alco
were used as a test of eyesight.
Ancient astronomy relied on
the optics in our own heads.
Today, we put telescopes in
space to observe galaxies
billions of years old in light
our eyes cannot see.

We don't limit ourselves to
observing the skies. We
remake them. Where the
namesake of my first
computer, Archimedes, once
traced geometric proofs in the
sand, today we build model
universes in silicon. We trace
gigayears of galaxy evolution
in humming boxes, bits
representing stars, interstellar
gas and invisible matter
leaping from machine to
machine at the speed of light.

Here's an example. This week
I used a small supercomputer

somewhere near Paris to
simulate a bubble of hydrogen
ions heated to ten thousand
degrees by radiation from two
massive stars. I wanted to
understand a particular piece
of how nebulae expand – what
happens when the radiation
increases tenfold as new stars
are born. The question was
whether an equation written
in 1978 to describe this
expansion still holds. It does.

What does a simulation mean?
An equation is a story. Each
part is laid out in sequence,
every variable clear in its role.
In this example, I used a
simulation to see whether this
story was true or not – if we
put all the same

Simulations

By Sam Geen

@eegnsma

“We don't limit

ourselves to

observing the

skies. We

remake them.”

21

characters in the same setting,
will they reach the same ending
as the story?

A simulation isn't a story itself. A
simulation is a landscape,
unexplored until it is plotted,
visualised, reduced. It is not a
real landscape, but one we
choose to generate, with its own
choices and limitations. If our
model for the violent death of
massive stars is wrong, or we
cannot resolve these vast
explosions in our simulated
galaxies, say, does our
simulation tell us anything
useful about them? As Deep
Thought told Loonquawl and
Phouchg, an answer without a
question is pointless, and it's the
question that takes the most
thought.

Simulations have value because
they are constructed to answer
certain questions. They are
expensive and time-consuming,
both for the machine and for our
limited time on the planet. We
must, without biasing ourselves
towards a certain result, ask
what kind of story we want to
tell before we ask the computer
what the ending is.

As scientists we must ask

ourselves why we're doing what
we do. Science is a toolkit for
understanding the universe, and
simulations are a powerful new
tool in that kit, growing in power
each time a new processor is
printed by workers in Asia, each
time designers push the physical
limits of these intricate
machines. It's tempting to see
this as an end in itself, the
march of technology
accelerating us to a utopian
future. But the only warmth a
supercomputer gives is waste
heat, dumping entropy into the
slow heat death of the universe.
Is this all we're doing, making
bigger numbers until the
universe grows cold and dark?

We must teach ourselves how to
tell stories. Science is not an
algorithm, a handle to be turned
until the whole universe unfurls
before us. It is a human act,
people sharing narratives, trying
to come to a deeper
understanding. Scientific
discoveries are human joys,
whether it's finding a new
creature deep under the ocean
or trying to fit the cosmos into
our heads.

Games, then. Computers can be
sterile things. Procedural

“A simulation is

a landscape,

unexplored until

it is plotted,

visualised,

reduced.”

22

landscapes stretching for
infinity with no life or
purpose. But the computer
was only ever a canvas,
something for humans to
impart meaning to. I follow a
simulated person go about
their day in a cityscape I built.
I watch two siblings bond over
their simulated person finding
love in a dressing gown. I see
a colonist nurse a raider back
to simulated health, become
friends.

Systems in games tell stories.
The simplicity necessitated by
simulations mean we must
choose the underlying models.
Do we want to tell a story of
endless conflict, capital
accumulation, ecological
collapse, nationalism, fear of
the other, shooting someone
for the last tin of beans in the
shattered world of our own
making? Or do we want to
deepen our understanding of
the world around us, to foster
beauty, to bring each other
closer, to imagine worlds
where exploitation, want and
cruelty are not necessary and
eternal. As Einstein said,
“human beings are not
condemned, because of their
biological constitution, to

annihilate each other or to be
at the mercy of a cruel,
self-inflicted fate”.

The simulators have only
interpreted the world, in
various ways. The point,
procjammers, is to change it.

“Or do we want

to deepen our

understanding

of the world

around us, to

foster beauty,

to bring each

other closer…”

23

“A comparison of the

source photo and

the result: a photo of

the woods in the

style of The

Cemetery by Carl

Fredrik Hill”

”St Michael at the

North Gate, Oxford,

England, in the style

of The Rocks by

Vincent van Gogh”

By Isaac Karth

procedural-generation.tumblr.com

Style TransfersStyle Transfers

Some of my
recent

experiments with
the NeuralDoodle

style transfer
neural network.

24

”A photo of the woods, in

the style of Part of a

Crucifix with the Ascent

of Christ, 13th century,

artist unknown”

“A photo of

Stonehenge, in

the style of a

Mughal painting

of Bibi Ferzana,

c. 1675, artist

unknown”

”A photo of a train

station, in the style of

View of Toledo by

Aureliano de Beruete”

25

I created my own noise library, named Space Noise Machine. It
borrows heavily from the "module" concept of libnoise by Jason
Bevins. I found libnoise was great, but I wanted to create my own.
One of the reasons is my goal is a game made entirely of my own
code. The second reason was that I thought libnoise could do with
more modules.

The Earth-like planet you see was generated through a couple of
spheres of noise. The ground, and the clouds.

The ground layer is produced by combining two Perlin Noise
generators, one through a Ridged Multi-Fractal modifier and the
other through a Fractional Brownian Motion modifier. This gives a
nice rough surface with mountain ranges, we'll call it Noise A.

A third Perlin Noise is generated which is also put through a
Fractional Brownian Motion modifier. This is used as a selector
between two constant modules, -1 and +1. The result is a splotchy
noise, large patches of +1 with short edge fades to -1. Or put another
way, landmasses (with no detail) surrounded by beaches. Call is
Noise B.

“The result is a

splotchy noise,

large patches of

+1 with short

edge fades to -1.”

Space Noise MachineSpace Noise Machine

By David Murphy

26

Noise A and B are then combined by using Noise B to decide whether
to sample from a Constant -1 value (the water) or a value from Noise
A.

End result is randomly generated land masses with ridged
mountains. The combination was done this way to avoid the
constant "mountains in the middle" of the landmasses that you see
when just taking Perlin Noise. It takes a lot more computational
power, but the result is much better.

The cloud layer is generated in much the same way. A Perlin Noise is
put through a Contrast Curve modifier and is used to generate
clouds. A second Perlin Noise is used to act as a selector between a
Constant -1 "no clouds" generator and the Clouds. The final, tricky
part, is spiraling this noise around randomly distributed points by
random amounts. This is what gives the clouds that swirly nature.

One of the most interesting things in this is that these aren't 2D
images that are being generated, but rather cubemaps. This is done
by all of the noise being generated in three dimensions and then
being sampled along the surface of a sphere before being projected
onto the cubemap. This results in no distortion at the poles.

The moons you see are low-res works in progress. The hardest part is
the creation of craters. The size, distribution and nature of them is
difficult; I've yet to create the modules to give them high ridges that
quickly falloff into low valleys.

This is all a work in progress for a game I'm working on. As a
programmer, not an artist, I needed to find a way to have pretty
graphics without knowing how to draw. By letting my programming
generate the art, it absolves me of a need for artistry and also gives
me access to an endless amount of content.

“I needed to find

a way to have

pretty graphics

without knowing

how to draw.”

27

As my end-of-studies project, I teamed with four other students to
release TOWN, our Tiny prOcedural World geNerator. You can check
it out online (http://delca.itch.io/town); feel free to contact us at
pcg.town@gmail.com if you have any questions.

We were originally aiming for a village generator with 4 different
themes to choose from, including "Countryside Village" and "Seaside
City". Features like hills, lakes, forests and flat lands were required,
and we used noise-generating functions parameterized to give us the
terrain we wanted. Optionally, a river can pathfind its way from one
side of the map to another.

To avoid floating buildings as much as possible, the village is placed
on a large and flat area, upon which randomly-scattered points have
been used to generate a Voronoi graph. Each face of the graph is
assigned a lot type (deciding if it will be filled with buildings or
decorative props) and some building templates, while roads are
drawn along the edges. Other decorative features like a main road,
street lights and utility poles were added to frame the village as part
of a bigger world.

We also have on-the-fly generated music playing while visiting the
village. Having not been involved in it, I sadly cannot say much
about it, other than that it uses common phrases from jazz music
and can produce really cool pieces with a bit of luck.

My role in this project was to fill the housing lots with buildings, a
work I did in two parts. The first was writing a house model builder
accessible via a small script language and a generator to create said
scripts, and the second was about delimiting spaces in our lots to
place the generated buildings. I learned a lot working on these tasks,
and wanted to highlight some of my favourite takeaways from this
project.

Postmortem On Generating

TOWNs

Postmortem On Generating

TOWNs
By Gregoir Duchemin

28

- Do not be afraid to use simple methods. The few articles I found
on house and building generation were all using 3D maths to
intersect solids. Since that was not trivial to implement from scratch,
I decided to first try a grid-based approach. While the result feels
blockier, it helped us when choosing a vision for the finished project
(we tried to emulate a Godus concept art), and we eventually settled
on it as an art style. Similarly, when we realized that our music
sounded more "classical" (to untrained ears) when played with
harpsichord samples, it removed the need for a more complex
method.

- Like with handcrafting assets, following a reference is a must. As
mentioned earlier, we used references and concept art from the
Internet to define our visual style. This stays valid for non-visual
things, like having an example script for a DSL or the outline of a
complex algorithm to help staying focused on bite-sized pieces of the
code base.

- Setting up an out-of-code, easy way to test your generator
encourages more frequent tests when implementing new features;
this was the reasoning behind my script-based house builder. That
way, testing out new features and building styles is easier, does not
require knowledge of the code base, and paves the way for presets
and themed-based generation.

- Breaking the parameters' limits can lead to unexpected yet
interesting outputs. By tweaking ours to force a very mountainous
terrain, we managed to make a village spawn on top of a mountain,
which was a scenario we wanted to avoid, and it turned out much
nicer than we expected. We liked it so much it ended up in our
presentation video !

- An organic look is nice, but can quickly devolve into a chaotic mess.
Adding some smaller, repeating patterns helps with making the

“By tweaking

ours to force a

very

mountainous

terrain, we

managed to

make a village

spawn on top of

a mountain...”

29

output feel less totally random and is a first step toward
constrained/themed generation. In TOWN, we contrasted the organic
feel of a Voronoi graph with a grid-based placement for house in the
middle of a lot. We also added some staple locations like a
marketplace, a sheep field and handmade detailed houses to serve as
known landmarks for the observer.

- As a follow up to the last point, regularly getting exterior
feedback is a must, especially on a group project where your vision
of the finished product is not the only one to shape the development.
Had I worked alone, there would be much more grid-based
placement in TOWN, which would have detracted from our aesthetic
goals.

Overall, while there are things I would do differently were I to
reimplement them, I think we managed to get the key points right
and produced a result we were proud of. Maybe our major mistake
was not having someone dedicated to make the visuals look nicer to
the eye...

“...a sheep field

and handmade

detailed houses

to serve as

known

landmarks for

the observer.”

30

Sometimes you stumble over a
dusty collection of source code
you haven't thought about for
years and can't even really
remember writing. This article
is about a bit of software
archaeology, Moore’s law and
procedurally generating alien
lifeforms.

GEO was a free/open source
software game I wrote around
10 years ago. I made it a
couple of years after I started
working in my first job at a
games company, and was
obviously influenced by that
experience. At the time I
remember it was a little
demanding for graphics
hardware so I moved on to
other things and forgot all
about it, but it turns out the
intervening years processing
power has caught up. It was
an attempt at a purely
procedural game, with no
assets at all – influenced by
how demosceners built vast
procedural worlds only with
code. The main thing about
GEO is that while being a
slightly awkward 2D space
shooter, the difficulty curve is

a side effect of artificial
evolution that happens as you
play, and learns from your
actions.

The game is set in an
expanding region of space
inhabited by lifeforms built
from component parts with
different purposes – squares
for generating energy,
triangles for defence and
pentagons which can be used
to spawn copies when
conditions are right. The
lifeforms grow over time
according to a genetic code
which is copied to
descendants with small errors,
giving rise to evolution. The
lifeforms have mass, and your
role is to collect keys which
orbit around gravitational
wells in order to progress to
the next level, which is
repopulated by copies of the
most successful individuals
from the previous level.

Each game begins at level 1
with a population of randomly
generated individuals, and the
first couple of levels are quite
simple to complete, as they
mostly consist of dormant or

Growing self representational life forms

& some dusty software archaeology

Growing self representational life forms

& some dusty software archaeology

By Dave Griffiths

31

Self destructive species – but
after 4 or 5 generations the
surviving lifeforms are the ones
that have started to reproduce,
and by level 10 one or two
species will generally have
emerged to become highly
invasive conquerors of space. It
becomes an against the clock
matter to find all the keys before
the gravitational effects are too
much for your ship’s engines to
escape, and the growth becomes
too fast for your collection of
weapons to ‘prune’ the emergent
structures.

AI in games is mostly considered
to be about emulating humans.
What I like about this form of
more humble AI (or Artificial
Life) is that instead of a program
trying to imitate something
complex like a human brain, it
really just represents itself –
challenging you to exist in it’s
utterly alien but consistent
world.

I wonder why the dominant
cultural concept of sentient AI is
a supercomputer deliberately
designed usually by a
millionaire or huge company. It
seems to me far more likely that
some form of life will arise –
perhaps even already exists – by
accident in the wild variety of

online spambots and malware
mainly talking to each other,
and will be unnoticed – at first,
and perhaps forever by us.

What I’ve enjoyed most about
playing and tinkering with this
rather daft game is exploring
and attempting to shape the
possibilities of the Artificial Life
while observing and
categorising the common
solutions that emerge during
separate games – cases of
parallel evolution. There is a
fitness function that grades
individuals which is used to
bootstrap the population before
they are good enough to survive
(e.g. they get points for simply
shooting at the player or
generating an energy surplus),
but most of the evolution after
the first couple of levels tends to
occur ‘naturally’ while you are
playing. The species which takes
over is the one that manages to
reproduces most effectively,
defends itself and repairs
damage the best.

'How it works'

Each individual in the
population carries around a text
description of itself, a
Lindenmayer system, which
contains an axiom (it's starting
condition) and 4 replacement

“...a program

trying to imitate

something

complex like a

human brain, it

really just

represents

itself...”

32

rules. We start with the axiom
and the rules are repeatedly
run on the output string to
'grow' the life form. This is an
example of a successful
organism “grown in the wild”
and it's L system description:

 axiom: "[[sp3ss"
 '0' → "][p3t]]]]"

'1' → "t][[[[["
 '2' → "2[s]t[tt"

 '3' → "ps[spp0s0"

At each growth step, the
numbers are replaced by the
corresponding strings – which
can contain their own
numbers and provide
recursive self similarity. These
are the first 5 growth steps for
this organism, starting with
the axiom:

0: [[sp3ss
1: [[spps[spp0s0ss
2:
[[spps[spp][p3t]]]]s][p3t]]]]ss
3:
[[spps[spp][pps[spp0s0t]]]]s][p
ps[spp0s0t]]]]ss
4:
[[spps[spp][pps[spp][p3t]]]]s][
p3t]]]]t]]]]s][pps[spp][p3t]]]]s][
p3t]]]]t]]]]ss

These strings are then parsed
to convert them into
structures: 't','s' and 'p'
represent triangle, square and
pentagon. When one of these
are found the parser searches
for following blocks of
characters enclosed by square
brackets. These are attached
to the sides of the shape in
order to provide a tree
topology.
There are many things that
could be done to improve or
expand this game, make it 3D,
get it on different platforms
and so on. I've recently
uploaded the source here with
some tweaks to make it easier
to compile:
https://gitlab.com/nebogeo/geo
Let me know if you get
anything interesting out of it,
or develop it in new
directions.

33

About the author:
Dave Griffiths is an award winning game designer, programmer and livecoding algoraver
based in Cornwall. In 2014 he co-founded Foam Kernow, an independent research
institution for exploring uncharted regions of art/science and designing speculative cultures.
Previously he worked in the games (Sony Europe) and film computer graphics industry
(Moving Picture Company), and has credits on feature films including Troy and Kingdom of
Heaven.

https://gitlab.com/nebogeo/geo
https://gitlab.com/nebogeo/geo

I'm a frequent commuter since I was old enough to take public
transport by myself. Subway, bus, train, you name it. Some people
hate the idea of taking public transport, but I sincerely love it. Most
of my game ideas revolve around the idea of experimenting with
traffic, and that hit me once a friend pointed that out to me. It seems
that ideas come from what you most usually do or live. This is a
realisation that I can live with, and it still keeps giving me ideas,
even if I can't get them together for a game.

One of the most curious things I've found during my commute is the
"love connection" section of the free newspapers I get before I board
the train. This section contains very short messages of people that
saw other people and wish to see them again to start talking. I've
seen teenagers reading the section messages with funny voices in
order to pass the time in the train, so I guess getting your message
out there like that seems kind of desperate. Still, some of these texts
are clever, some sweet, mostly are not specific enough to be creepy;
you could even argue they are the product of some intern’s mind and
their desires, written in a corner at the newspaper headquarters.

Anyhow, I started wondering on a game that happens while
commuting but it's not about traffic, but rather about the people that
commute regularly. There are some unwritten rules about
commuting: do not chit chat too long with someone who is visibly
annoyed by your attempts to talk with, do not stare too long at
people, DEFINITELY do NOT talk to someone who is wearing their
earphones, among others.

Chance A: Me Chance A: Me

By Ciro Duran

www.ciroduran.com

“It seems that

ideas come

from what you

most usually

do or live.”

34

At the same time, if you're looking to connect with someone, you
need to somehow go around these rules. This forms the basis for a
short game, for which we can add a bit of procedural generation to
generate stories. What if the love of your life is with you in the same
carriage at this very moment? They're sending a message to you, you
just have to figure out who is telling you that, and try to find their
gaze. Look into them for very little time, and they won't find out,
look into them too much, and you'll scare them away.

I'm currently experimenting to see where this premise leads to. In
the technical part, I'm using OpenFL for drawing some faces and
animating them, and I'm using Tracery (http://tracery.io) for building
the messages. I'm specifically using a Haxe port I made
(https://github.com/chiguire/traceryhx) from the original Javascript.

The game generates a character from a series of parameters (you can
see an example here - http://tinyurl.com/seedschance), and then it
would build a grammar from those features to build a message.
Since the person must describe you, you should also create your own
character. You can notice that the hair is still work in progress. :)

The idea of the game is to have very simple controls, just move the
mouse and click a button, using the gaze as the main verb in the
game, but this is all still experiments. For now, I just have a simple
way to display faces, and a way to generate silly descriptions. In
order to get the ball rolling, I fed the Tracery grammar to a bot with
these descriptions, which you can see at @chancea_me thanks to
Cheap Bots, Done Quick! (http://cheapbotsdonequick.com). Hopefully
the bot will explore some ways a relationship could start (or crash
and burn).

I hope you have fun, and you can find some inspiration on your
bots/procedural generation/stories in your day to day.

35

Overworld Forever is a
tile-based adventure game
created by training a level
generation system on the
overworld map from The
Legend of Zelda. The game uses
an n-gram based approach that
can create overworlds that are
statistically similar in layout to
the original game. By increasing
and decreasing the length of the
n-gram, the system can be made
to produce maps that vary
between having no coherence
between adjacent tiles to ones
are so constrained that they are
identical to the original Zelda
map.

Somewhere in the middle of
these two extremes are
overworlds that are similar
enough to the source map to
playable while providing
enough variation to be
interesting. They are often hard
or impossible to traverse with
paths that lead to nowhere,
rivers that flow into deserts then
stop and horizontal bands of
hedgerows and boulders where
the system gets stuck in
probabilistic cul-de-sacs.

Like all Machine Learning based
generative algorithms, the
system works in two phases;
first, it trains, then it generates.
In the training phase, the system
works out the probability that

each tile will appear at the end
of a sequence of other tiles in the
original map. Any sequence of
tiles can be represented as a
string of their indices
concatenated together. These
can then be put into a hash
table. Each sequence hash is
keyed to a list of possible
successor tiles. The algorithm
iterates over the map and every
time it encounters a sequence, it
records what the next tile is and
places into that sequences
successor list.

To generate overworlds, the
system puts down a random tile
at the map's origin, then looks
for the sequence containing only
that tile in the hash table. It
then selects the next tile from
the list of successor tiles for that
sequence. This process
continues until the system has
generated enough tiles to fill the
new map.

In the future, I’m hoping to
expand the game to include
dungeon levels and limit the
space of possible overworlds to
ones that satisfy basic
playability constraints like
making sure the player can walk
to every room on the map.
Perhaps hybrid systems that
blend grammar-based
approaches with machine
learning might be a good way to

Overworld ForeverOverworld Forever

By David Morrison

36

train dungeon generators with
similar flows to the original
Zelda while making sure they
can be traversed and
completed.

The n-gram technique
described above can be
applied to any tile based game
or image. Statistical learning
approaches such as this
provide designers with new
ways to explore the parameter
spaces around their designs
without explicitly formulating
them as generative systems.
There is the potential to
integrate them into level
editors, allowing designers to
train their design tools on
collections of their previous
work. The broader family of
techniques is not limited to
grids. For example, stochastic
graph and shape grammars
can be trained on level
topologies. This increases the
kinds artifacts and forms that
can be generated to include
most game genres.

Machine Learning also opens
up the possibility discovering
structures and patterns inside
existing games and directly
transferring them to future
ones. The topology of the
levels in a game like Pacman
could be used to train a model
for generating first person
shooter levels, for example.

Perhaps that’s getting a bit far
out but even relatively
straightforward techniques
can yield unique and
interesting results based on
existing games and content
that’s just sitting around
waiting to be mined!

Overworld Forever is
implemented in Processing
using sprites and map data
stolen from The Legend of
Zelda. It is available on
Github at
https://github.com/davemor/ov
erworld-forever.

David Morrison is a
research assistant
in the St Andrews
Human-Computer

Interaction
Research Group. A
long time ago he

used to work in the
games industry.

“Machine

Learning also

opens up the

possibility

discovering

structures and

patterns inside

existing games

and directly

transferring

them to future

ones.”

37

https://github.com/davemor/overworld-forever
https://github.com/davemor/overworld-forever
https://github.com/davemor/overworld-forever

An Introduction
Moai is a procedurally-generated low-poly exploration game where
you play as a moai, or a sentient stone being, with the power of
infinite patience, allowing you to fast-forward time and watch trees
sprout and days and nights pass. This game was made as an
undergraduate senior project at the University of California, Santa
Cruz by a team named Eggy Interactive.

Our vision from the beginning was to create a beautiful, vibrant, and
vast world that players could lose themselves in. To achieve creating
a world with the size and complexity that we wanted, we turned to
something called procedural generation. This basically means that
before the player hits PLAY, the world doesn’t exist yet. The game
will create the world on the spot as soon as you hit that button,
creating a world based on pseudo-random numbers and values that
the computer generates, resulting in something completely different
every time the player starts a new game.

Creating a World
The world created by the game comes with many system such as a
day/night cycle, weather, vegetation system, and more. The most
fundamental system is the terrain generator. The world is generated
in square units we call chunks. The topography of these chunks are
determined with perlin noise maps, which decide the height, kind of
topography, and biome of each chunk, resulting in various
formations like hills, valleys, and mountains.

What about the objects? If we places objects randomly into the
world, the system would sometimes end up putting all the trees in
one spot, similar to how sometimes when you flip a coin multiple
times, you somehow get heads every time. Even if the objects were
placed spaced out randomly, the area would look more like a messy
room than a forest. Instead, we divided up the chunk into smaller

MoaiMoai

By Eggy Interactive

www.moai-game.com

38

areas, then designate a spot to place a cluster of objects in those
areas, and then place objects in a random space inside a circle
around that spot. This way we get nice clusters of objects and makes
the area look more like a natural forest.

A Natural Low-Poly Look
When it comes down to it, there was just so much we could leave to
the system to generate. That being said, not every single aspect of the
world was left for our generators to decide. While the “when’s,”
“where’s,” and “how’s” were decided by the generators, the “what’s”
were designed by us. One of the key elements the system needs to
know when deciding what to put in each chunk was what biome that
particular chunk is going to be. We designed eight unique biomes
that the system can choose from, each with their own set of weather,
vegetation, and scenery. These things all need to be manually
designed by our art director, who decided on the low-poly aesthetic.

Low-poly is a very popular aesthetic taken on by many games -
especially indie games because of its simple yet elegant look that is
easy on the eyes. During prototyping, we attempted the “super
simple” style that many low-poly games opt for, but while the visual
were very nice and clean, we felt the hard edges made the world feel
less vivid, natural, and “alive,” so we tried a different approach.
Instead of using the polygonal shapes to define just the generic shape
of each object, we also used the vertices and polygons to create
texture in each object, adding more detail to object and giving it a
more natural look while still keeping the elegant style of the low-poly
aesthetic. We have to give props to our very talented art director
who somehow found the perfect combination of order and chaos,
incorporating a sense of flow for the eyes to follow in each design
and animation. Speaking of animation, the world actually grows
right before your eyes. Every large plant is animated to grow as you
fast-forward time, allowing you to witness the life cycle of entire
forests. Additionally, the vegetation and scenery are

“Instead of

using the

polygonal

shapes to

define just the

generic shape

of each object,

we also used

the vertices and

polygons to

create texture

in each

object...”

39

programmed to each have their own ambient animations, such as
vines swinging, flowers waving, and water stirring. When you stand
still, the world isn’t frozen, but full of life.

With all of this, we’ve made a vivid and beautiful world with
absolutely nothing to do in it. In fact, with procedural generation, it’s
very easy to make something extremely pretty, but also extremely
boring. Our biggest design obstacle was now: what do we do with
this world? We’ve made the interesting to see; now how do we make
the interesting to do?

The Interesting to Do
Our solution to that is Points of Interest. The primary goal of points
of interest is to promote exploration - or in other words, get the
player to walk around the pretty world we worked so hard to make.
In addition to placing the vast amounts of vegetation and scenery,
we also have our system strategically place shrines and obelisks,
which have cryptic symbols on them used for puzzles. These
structures are made to be very noticeable - they have glowing beams
and react to player interaction. These are meant to lead the player
from point to point in the world. Our biggest points of interest are
giant floating islands in the sky. We’ve designed these islands to be
the ultimate end-goal of the game, so they’re really high in the sky
and you can see them from practically anywhere, acting as a visual
goal that the player strives to reach.

All of these things that we’ve designed and generated amounts to this
vast and beautiful world that the player can explore endlessly. Moai
was a game that was designed over a short period of five months
with a small team of five people as an ambitious senior game design
studio project, which is part of the University of California, Santa
Cruz undergraduate Computer Science, Computer Game Design
program. The current release of the game is only the

40

“...we had to

scrap many

amazing ideas

because we

had many

deadlines to

meet in an

unfavorable

amount of

time...”

beginning of the vast vision we have for this game. During the two
quarters we had to make this game, we had to scrap many amazing
ideas because we had many deadlines to meet in an unfavorable
amount of time, but now that the idea has become a tangible,
working game, we’re excited to continue working on it and turn it
into the vision we’ve always wanted Moai to be.

Until then, the game can be downloaded at
eggyinteractive.itch.io/moai. We hope that you have as much fun
playing it as we did making it!

41

Moai by Eggy Interactive
Brian Lin – Creator, Designer, Programmer
Yunyi Ding – Art Director
Ryan Lima – Developer, Programmer
Nathan Irwin – Producer, Programmer
Anderson Tu – Composer, Audio Designer, QA
Coordinator
www.moai-game.com
eggyinteractive@gmail.com

For us computer scientists and
game developers, Procedural
Content Generation is directly
connected with computers and
algorithms. It seems such a
modern thing!

In reality, the exploration of the
“combinatorial nature of art and
human thoughts” is much older
concept. Probably, the most
interesting and old writing on
“PCG” is the doctoral
dissertation of Gottfried Leibniz,
De Arte Combinatoria (On the
Combinatorial Art) (1666) in
which he exposed the main idea
that “all truth are nothing but
combinations of a relatively
small number of simple
concepts”.

Even if this small idea was
always in the back of the head of
the most daring artists, we have
to wait until 1961 to see the first
literary work that we can define
a PCG opera. That year,
Raymond Queneau, a French
novelist and poet, published the
book Cent mille milliards de
poèmes (Hundred Thousand
Billion Poems). The book is
composed by just ten sonnets of
14 verses, but it was printed
such that each verse of the
sonnet is on a different paper
strip. The reader can, therefore,
“generate” a different poem by
changing each of the 14 verses
with one of the 10 variations. At
the end, the book contains 1014

different combinations,
hundreds thousand billions
poems, precisely.

Probably, Marc Saporta, another
French writer, thought that 1014
was not enough because in 1962
he published the book
“Composition n° 1”, a book
composed by 150 not-numbered
pages that can be shuffled at will
by the reader producing 150!
(factorial) different books.

“The reader

can, therefore,

“generate” a

different poem

by changing

each of the 14

verses with one

of the 10

variations.”

PCG without a Computer:

 Combinatorial Literature

PCG without a Computer:

 Combinatorial Literature
By Davide Aversa

@thek3nger

42

This was just the beginning of
a literary movement called
combinatorial literature, in
which authors used math and
combinatorial generation as a
tool for inspiration. The most
emblematic author probably
was Georges Perec who
creates a complex system
referred by himself as “a
machine to inspire stories” for
the book La Vie mode d'emploi
(Life, a User's Manual). The
book tells the story of a big
building with 10 floors and 10
rooms per floor (imagine a
10x10 square). The narration
starts from a room and
continues with L-shaped
movements (just like the
Knight in Chess) from room to
room until covering all the
rooms but 1 (the basement).

Moreover, the book contains
42 lists of objects such as,
emotions, animals, countries
and more arranged according
several Graeco-Latin squares
(a 10x10 arrangement of pairs
of different lists such that
every row and every column
contains each element of one
list exactly once, and that no
two cells contain the same

ordered pair). These squares
are then explored “randomly”
by the L-shaped narration
producing a list of objects that
the author have to include in
the current chapter. I know, it
is quite confusing right now.
But I really encourage you to
look more in details on the
mathematical structure of this
book! It is worth your time.

43

Another author fascinated by
the use of mathematical rules to
generate novels was Italo
Calvino, an Italian novelist. The
influence of the combinatorial
authors is clear in book such as
Le città invisibili (Invisible Cities)
in which the author (as Marco
Polo) describe 45 cities
according 9 thematic groups and
in such a way that each part of
the description can be
exchanged with each other so
that “the reader can create its
own path in the book”. Or in Il
castello dei destini incrociati (The
Castle of Crossed Destinies) in
which the author use a deck of
73 tarots arranged in such a way
that reading each line (from
right to left or left to right, but
also from top to bottom or from
bottom to top) describe one of
the 12 stories narrated in the
book.

You probably have noted that all
the author I mentioned are
French (except for Calvino), but
they have another point in
common. They all (except for
Saporta) belong to the same
literary group: the Oulipo
(Ouvroir de littérature

potentielle, workshop of
potential literature). If you are
interested in this complex
experimentation with the
narrative and the human
language you definitely have to
take a look to the Oulipo’s
authors. Ah, by the way, the
group is still on activity and has
a nice website
(http://oulipo.net/). Check this
out.

“...each part of

the description

can be

exchanged with

each other so

that “the reader

can create its

own path in the

book.”

44

http://oulipo.net/

I started investigating offline rendering of 3D cellular automata after
my work on öde (https://kchapelier.itch.io/ode) for PROCJAM 2015
which used 3D cellular automata to create abstract skyscraper-like
structures in a huge simplex/perlin noise desert.

Nowadays I use MagicaVoxel and a custom command line interface
tool (https://github.com/kchapelier/cellular-automata-voxel-shader)
to modelize the volume on the GPU by applying several CA rules
iteratively. In this particular workflow, each cellular automata rule
can be thought of as a simple volumetric hue or paint and, with
enough practice, the user develops a general intuition of how those
paints will behave when mixed together.

3D Cellular Automata3D Cellular Automata

By Kevin Chapelier

45

https://kchapelier.itch.io/ode
https://github.com/kchapelier/cellular-automata-voxel-shader

Working directly with MagicaVoxel (developed by
https://twitter.com/ephtracy) offers a lot of advantages: quick
previews of the volume while working on it, the ability to
'undo/redo', a path tracing rendering engine with a lot of options
including a marching cube rendering which is perfect for cellular
automata and the tool is frequently updated with new features.

46

https://twitter.com/ephtracy

47

Every time I start thinking about designing a roguelike or a game
that use procedural generation for maps, I start googling to see what
are the different techniques generation techniques. After selecting
the best one, I start writing a code for it from scratch or copying it.
This process is tiring and cumbersome especially during prototyping
phase. In prototyping, I need just to test the idea as quickly as
possible. The main problem when one of these ideas depend on
procedural generated maps. After creating couple of roguelike
prototypes, I couldn't take it anymore. I decided to write my own
library that I can use it in prototyping. I called this library
ProcEngine.

ProcEngine is an open source procedural map generation engine
that allow the user to select from bunch of different generating
algorithms and tune them. ProcEngine is inspired by Nicky Case
(Simulating the world (in Emoji)) and Kate Compton (tracery.js). The
current version of ProcEngine (v1.1.0) supports the following
features:

● Different techniques to divide the map into rooms. Only two
techniques are implemented: equal division and tree
division. Equal division divides the map into a grid then
selects room from this grid, while tree division divide the
whole map along the longest dimension till reach the
required number of rooms.

● Define different tiles and define their maximum count.
● Define different neighborhoods in form of 2D matrix of 1's

and 0's. 1's are the places to check while 0's otherwise.
● Define any number of cellular automata that the system will

apply after each other.
● Specify where to apply the cellular automata. The system

support two positions either applied on the whole map
regarding of the room structures (useful for smoothing the
whole map or generating game objects) or on the generated
rooms (useful for designing dungeons).

● Connect/delete the generated islands after applying each

“ProcEngine is

an open source

procedural map

generation

engine that

allow the user

to select from

bunch of

different

generating

algorithms and

tune them.”

ProcEngine: An Open Source

Procedural Map Generation Engine

ProcEngine: An Open Source

Procedural Map Generation Engine

By Ahmed Khalifa

48

cellular automata.
● Cellular automata rules can have multiple conditions and

replacing values.

The engine allows the users to modify the underling generator
through the following functions:

● procengine.initialize(data): to initialize the system with
your rules.

● procengine.generateMap(): to generate a level (you have to
call initialize beforehand).

● procengine.toString(): to get a string that shows the current
data saved in the system.

● procengine.testing.isDebug: set to true to allow console
printing after each step in the system.

In order to use the system you need to call
procengine.initialize(data) function first then you can call
procengine.generateMap() for as many as you want. Each time you
get a new generated map. For more details about how to use the
engine refer to github (https://github.com/amidos2006/procengine).

Here is a bunch of examples that shows the capabilities of the
system. The first example is a very simple generator. The generator
should generate a map of 36x24 with 10 rooms using equal division
technique.

var data={
 "mapData":["36x24", "solid:empty"],
 "roomData":["equal:4x4:10", "empty:1"],
 "names":["empty:-1", "solid:-1"],
 "neighbourhoods":{"plus": "010,101,010"},
 "generationRules":[
 {"genData":["0", "map:-1", "connect:plus:1"], "rules":[]}
]
};

49

Here are four different generated maps from the previous data,
where white is empty and black is solid:

The second example is more complicated where it generates a map
of 36x24 with 5 rooms using tree division technique. Also, it uses
three cellular automatas in the following order:
1. Generate the solid structure of the rooms.
2. Connect the rooms together all over the whole map.
3. Adds objects (1 player, 10 gold pieces (at most), and 15 enemies (at
most)).

var data={
 "mapData":["36x24","solid:empty"],
 "roomData":["tree:8x8:5","empty:2|solid:1"],
 "names":["empty:-1","solid:-1","player:1","gold:10","enemy:15"],
 "neighbourhoods":{
 "plus": "010,101,010",
 "all": "111,111,111"
 },

50

 "generationRules":[
 {"genData":["3","room:-1","connect:plus:1"],
 "rules":["empty,all,or,solid>5,"solid:4|empty:1"]},
 {"genData":["1","map:-1","connect:plus:1"],
 "rules":[]},
 {"genData":["1","room:-1","connect:plus:1"],

"rules":["empty,plus,or,empty>2,"player:1|empty:8|gold:2|enemy:2"
]}]
};

Here are four different maps generated from the previous data,
where black is solid, white is empty, blue is player, red is enemy,
yellow is gold:

51

A lot of procgen-heavy games ask players to explore: to go out into
the game world and actively seek out surprises amidst the
procedurally generated landscape. Exploration of this kind tends to
monopolize the player’s attention; as you explore, you have to pay
close attention to the terrain you’re traversing, the landmarks you
encounter, and the dangers that beset your path. You must keep your
wits about you as you venture ever deeper into parts unknown.

In exploration games that feature large expanses of procedurally
generated terrain, this often entails spending a whole lot of time
looking at “samey”, repetitive content: the connective tissue that fills
the gaps between sparsely distributed points of interest. With
nothing to distinguish one massive flat expanse of desert from the
next, the novelty of scale rapidly gives way to the tedium of picking
your painstaking way across another hundred dunes.

What happens once you finally do find something – a temple in the
desert? In many exploration games, there's no real reason to ever
visit the same place twice. The loop goes something like this: you
travel until you discover an interesting place; investigate it as
thoroughly as you like; take from it any resources you might want or
need; and then keep pushing steadily onward, away from the
clean-picked remains of your past.

This, as a format, is hostile to narrative. Stories are fundamentally
about change, and you can't witness change in anything or anyone
besides yourself unless you observe that thing or person repeatedly
over a period of time. If you never encounter the same character
twice, none of the characters will ever have any chance to undergo
long-term change. This limits the stories that can be told about them
to the scope of however much change they can undergo in the course
of a single encounter.

* * *

“Stories are

fundamentally

about change,

and you can't

witness change

in anything or

anyone besides

yourself.”

Gardening GamesGardening Games

By Max Kreminski

52

Gardening games are different. Where the exploration game
requires its players to put in more effort if they want to encounter
more surprising generated content, the gardening game keeps
generating new content in the background – regardless of whether
the player is paying attention to it or not – and brings any surprises
it generates up to the player on its own.

The surprises of the garden are nothing as monumental as isolated
temples in the desert. Instead, they are narrative surprises: surprises
of cause and effect, of pushing on one small part of an
interconnected system and watching the effects reverberate
throughout the whole.

The player can use a variety of tools to exert influence on the garden,
but the ultimate outcome is always shaped by forces entirely outside
of the player’s control. You can water certain flowers and plant
certain seeds, but the weather doesn’t always agree with your
choices of which plants to favor. You can try to plant pink flowers
over here and purple flowers over there, but don’t be too surprised if
– over the course of a few generations – the indiscriminate activity of
pollinators erodes the sharp distinction between the two until it falls
entirely away.

To play a gardening game is to become intimately familiar with the
story of a bounded space as it changes over time. The player’s
attention remains fixed on a single, gradually evolving system; it is
not scattered throughout a vast world whose individual parts are
uniformly disconnected. To know why a garden looks the way it does
today is to understand not only the histories of its individual parts,
but also of the relationships between them, both past and present. In
a garden, each individual tree becomes a character in an ongoing
story, with a personal narrative arc all its own.

* * *

“The player can

use a variety of

tools to exert

influence on the

garden, but the

ultimate

outcome is

always shaped

by forces

entirely outside

of the player’s

control.”

53

What games are gardening games? Neko atsume is a gardening
game. Animal crossing is the quintessential gardening game.
Stellaris, when played in certain non-expansionist ways, has
something of the gardening game about it. Epitaph
(https://mkremins.itch.io/epitaph), an idlegame I made for the fermi
paradox jam, was initially conceived as – and largely remains – a
gardening game.

Twitter bots, too, are garden-like in nature. You set up a generator
and let it run, stopping by occasionally to search through its recent
output for a harvest of surprising content. Although the underlying
generative structure of a twitter bot is often painfully evident from
only a small sample of its tweets, there is a great deal of pleasure to
be had in seeing how the different elements of this structure
sometimes conspire to produce funny or startling results.

Let a thousand gardening games bloom!

54

Super-W-Hack! is a
synchronous
(http://amidos-games.com/diff
erent-time-systems/) roguelike
game where everything is
automatically generated:
levels, weapons, bosses, and
sounds. It is a tribute to the
roguelike genre, and is
inspired by various games,
such as NetHack, Super Crate
Box, The Binding of Isaac,
Spelunky, Sproggiwood, and
more.

In Super-W-Hack!, the player
explores five levels designed
into a 2D map similar to those
in The Binding of Isaac. To
proceed, one needs to clear
each room of enemies. After
killing all the enemies, the
player must accept a crate that
will replace their current
weapon with a new one.

In this game, weapons are
represented as patterns. One
will not see the actual weapon
causing damage, but will see
its effect on the map before
choosing to trigger it. Our
intentions behind weapon
generation was to (hopefully)
increase diversity, since one
player may never get the same
weapon twice, and encourage
strategic planning.

Weapon generation starts
with a pattern that is filled
arbitrarily in a random size
grid. Patterns can be centered
on the player or appear in
front of them. If placed in
front, they may also be infinite
patterns, which repeat
themselves until they reach a
wall or enemy. Additionally,
playtesting showed us that
most players had a hard time
predicting patterns behaviors

“After killing all

the enemies, the

player must

accept a crate

that will replace

their current

weapon with a

new one.”

By Ahmed Khalifa and Gabriella A. B. Barros

Procedural Generation in

Super-W-Hack!

Procedural Generation in

Super-W-Hack!

55

when they were too "noisy". Our
solution was mirroring patterns
in relation to the player.

Finally, the weapon's name is
generated using a combination
of adjectives and nouns, and its
sound effects are generated
using sfxr. Both sounds and
name are based on how good a
given weapon is, which is
calculated regarding how large
is the area of attack and how
protected is the player (can they
attack from a distance?). A set of
100 weapons is generated at the
beginning of the game, and
sorted according to their power.
Whenever the player gets a new
weapon, one is selected and
removed from the set, based on
the level difficulty.

Levels in Super-W-Hack! are
generated using multiple steps.
First, the game chooses the
dungeon name in the following
format "The \#dungeonType of
the \#adjective \#bossType}".
\#dungeonType consists of 5
categories of dungeons which
affects tile colors. \#adjective is a
list of funny adjectives added to
the \#bossType. \#bossType is a
list of different objects, animals

and jobs.

After that, the game selects the
map dimensions and generate a
2d maze of rooms using breadth
first search, then assign a type
for each room. Breadth first
search is a search algorithm
that, starting from a certain
room, explores all non visited
neighboring spaces and may
transform it into a room, then
repeats using the new rooms.
visited. Possible room types are
the starting room, an enemy
room, an empty room, or a boss
room (only on the fifth level of
the dungeon).

Finally, as soon as the player
enters, the game starts
generating the room. %based on
its room type. The first step is
using cellular automata to
generate the room structure.
Cellular automata is a technique
inspired by Conway's Game of
Life. Each map tile have a
probability to be either solid or
empty based on the surrounding
neighbors. After that, if the room
type is an empty room, then
produce a crate; if it is an enemy
room, add enemies based on the
level number and the

“The first step is

using cellular

automata to

generate the

room structure.”

56

generated gun power.

Super-W-Hack! has 4 enemy
types: (C)haser chases the
player, (P)atrol moves
horizontally or vertically and
shoot laser if the player in
front of it, (S)pinner rotates in
the middle of the room and
shoot laser if the player in
front of it, and (M)iner moves
randomly leaving a mine trail
behind it. Enemies can attack
each other if an enemy is in
between the player and
another enemy.

Bosses contain two or three
behavior strategies, which can
be either movement strategies
(moves randomly, teleports,
chases the player), attack
strategies (leaves a mine on
the floor, charges towards the
player, shoots a single spot or
a laser in front of it) or a
special strategy (spawns
enemies, heals itself). The
generator selects strategies
and creates the boss based on
the \#bossType in the level
name.

Super-W-Hack! was an
ambitious project. We aimed

at implementing many
interesting features in a short
time span. Although we didn't
have enough time for
enhancing the game to its full
potential, it received positive
feedback for its nostalgic art
style, generated weapons, fast
paced gameplay and short
respawn time. On the other
hand, some found the game
confusing, % a synchronous
roguelike game with laser
enemies was confusing as they
expected the enemies to move
after the player and not at the
same time, and the current
tutorial didn't clarify it
enough. It was also a hard
game, due to one-hit kills,
enemies spawning too close to
the player, among other
reasons.

“It was also a hard

game, due to

one-hit kills,

enemies spawning

too close to the

player, among

other reasons.”

57

Back in September 2014, I decided that my final year thesis was
going to involve procedural generation. I had enjoyed games with
random yet functional levels such as Spelunky and Rogue Legacy
that I wanted to explore the idea of creating levels from parameters.
It has been two years and I’m still learning several approaches to
procedural generation and even created my own to use in my
current game, Gemstone Keeper, a twin-stick shooter roguelike with
a heavy ASCII art style, procedural levels and gemstones!

It started with my thesis project, the Procedural Level Editor. This a
program and library combined that let you generate multi-roomed
procedural levels where you can adjust the parameters and preview
at runtime. I wrote the library so the level generation can be
separated into multiple parts, which also means the editor itself can
preview each stage. Since graduating from University I’ve since
updated the library and tool to include pathfinding, make overriding
the parameters easier and even exporting individual levels in both
text and images formats. I still use the Procedural Level Editor to
generate the levels in Gemstone Keeper.

Caverns, Gems and Plenty

of Text

Caverns, Gems and Plenty

of Text

By Tim Stoddard

58

The Procedural Gemstones were something I created for PROCJAM
2016 back in February, as a means to display 3D gemstone graphics
without creating and loading in models. I was inspired by methods
to generate snowflakes by use of symmetry. By controlling the shape
of the gemstone with the amount of lines of symmetry, I could create
the vertices needed to create the gemstones I needed. I originally
created the procedural gemstones in Unity, but Gemstone Keeper is
written in C++ with SFML, so there was the fun task of writing a
software 3D renderer. In the end I found creating procedural meshes
to be a fun challenge that became very useful.

Since then I still find myself using procedural generation to solve
problems. Recently I’ve been using Worley and Perlin Noise to add
some ice and fire effects to the caverns, and using Markov Chains to
generate the names for the gemstones. Ever since I started work on
Gemstone Keeper, I’ve often enjoyed the challenge of making
something from almost nothing, which is why almost all the graphics
are made from a single text font file. When the object gets more
challenging, the process to creating that object gets more creative.

59

A few months ago, I read a nice post by Kate Compton on creating
generators (http://tinyurl.com/seedscompton). However one thing
was bugging me – the post says that constraint solvers are not
something you could easily use for PCG. Here, I want to convince you
about the opposite – constraint solvers are great tools for PCG and
implementing your own is easy.

So what are constraint solvers for? Let’s say you have a dungeon
map and want to decide what goes into individual rooms (enemies,
loot …). You also have some idea on how the dungeon should be
composed – “There is always a healing item close to strong enemies”;
“Total strength of all enemies is less than 200” or “No two adjacent
rooms have the same content”. Or you develop an open-world game
and you want to generate “bring me an item” side-quests using
existing NPCs, so you need to choose an NPC as a quest giver, the
item it wants and an NPC that has the item. You want the NPCs to be
in reasonable distance from each other and the item must be
something the quest-giver wants.

Both examples can be modelled as a bunch of variables (contents of
the individual rooms / quest-giver, item and item-owner) where each
variable is associated with a domain. A domain is simply list of
possible values (enemies and loot / existing NPCs / item types) and
every variable may have a different domain. Your design
requirements than form constraints that say what combinations of
values are OK. Constraints can concern a single variable (“the quest
giver must like the player”), a pair of variables (“quest giver does not
have the item”) or even multiple variables. The solution is then an
assignment of the variables from their respective domains that
satisfies all constraints. This forms a constraint satisfaction problem
[1] which is solved by a constraint solver.

The nice part here is that you don’t have to know how to find what

[1] Some of the terminology I use in this article may seem arcane, but it is used
because of its Googleability.

Stop Worrying And Love

Constraint Solvers

Stop Worrying And Love

Constraint Solvers

By Martin Černý

“....constraint

solvers are great

tools for PCG

and

implementing

your own is

easy.”

60

you are looking for, you only need to be able to recognize a valid
result when you have found it.

So how do we implement a simple constraint solver for our
generator? We combine two things: search (try all possible
combinations) and inference (quickly eliminate obviously wrong
possibilities). The search part (also called backtracking) goes like
this:

1. Start: no variables are assigned a value, choose the 1st
variable as currentVariable
2. Repeat [2]

a. If all variables up to currentVariable are assigned
values that satisfy all constraints, move to the next variable
(currentVariable++)

i. If there are no more unassigned variables,
current assignment is a solution

b. Else assign next value to currentVariable.
c. If all values for currentVariable have been tried,

unassign currentVariable and return to previous variable
(currentVariable--). This is called “backtrack”.

i. If all values for the 1st variable have been
exhausted, there is no solution.

Once you implement this you can add inference techniques, until the
generator is fast enough. The beginner’s menu consists of:

● Node consistency: Before the search, check all constraints
that concern only one variable and remove the failing
values once and for all.

● Forward checking: After moving to a new variable in 1.a,
scan the domains of the remaining unassigned variables
(one at a time) and remove values that do not satisfy
constraints involving the already assigned variables. Note

[2] Some sources describe the algorithm in recursive form. The forms are
equivalent.

61

that you have to remember which values were removed in
this step, because they need to be returned on backtrack.
Bitmasks are an efficient way of storing which values should
not be tried.

● Backjumping: Upon backtrack, you can safely skip multiple
variables back as long as the skipped variables are not
involved in a constraint with the variable that caused the
backtrack.

These three weird tricks are sufficient to solve small problems (as in
the sidequests example) in microseconds! Adding more juice, (links
below) can get you solutions for problems with few dozen variables
(as in the dungeon generator) in milliseconds.

You should also not forget to randomize the order of variables in the
domains prior to running the algorithm to get different results every
run.
And that’s it! You have a solver!

Further reading:
● “How to build a constraint propagator in a weekend” by Ian

Horswill and Leif Foged (includes C# code)
http://www.cs.northwestern.edu/~ian/GDCConstraintsHowT
o.pdf, also a related academic paper “Fast procedural level
population with playability constraints” describing CSPs for
filling in a dungeon.
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/vi
ewFile/5466/5691

● My work with CSPs for Kingdom Come: Deliverance
described in detail in Chapter 6 of my thesis (C source code
available) http://popelka.ms.mff.cuni.cz/~cerny/thesis/ or a
more condensed version in an academic paper:
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/vie
w/8995

Figure: Debugging CSPs in Kingdom Come:Deliverance (finding tuples of NPCs
for short events).

“These three

weird tricks are

sufficient to

solve small

problems (as in

the sidequests

example) in

microseconds!”

62

http://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/8995
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/8995
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/8995

These are three different
lenses to use when looking at
your shiny new procedural
generation system. These are
not intended to be the only or
best ways of thinking about a
system, but are things that
might be useful to keep in
mind, regardless of the
system's domain or generation
method.

i. Ontology

To generate something, we
need to know what it's
composed of. Songs are made
of chords, which are made of
notes; stories are made of
characters and actions (all of
these are reductive). But when
we generate something, there
are always atomic units. We
can't break a music note into
parts, and characters have
traits, but typically we don't
see traits as having subtraits.
Defining the ontology for the
generator (or the set of all
possible concepts that exist
within the generator) is a
critical part of building the
generator, since nothing that

is outside of the ontology can
be output by the generator.

ii. Mereology

With the set of things in the
world in place, we need some
way of describing how to
combine them. Mereology, the
study of parts and wholes, is
the foundation for this. In
order to make things from
their constituent parts (events
in a narrative, furniture in a
room layout, organisms in a
planet's ecosystem) we need to
be able to describe how things
are composed from which
subparts. For any given
artifact, there can be multiple
ways of breaking it into
component parts: a place
setting is made of cutlery,
plates, bowls and cups; or a
place setting is made of a
central dish, with some things
to the left, some to the right
and some above. This
framework gives us a way of
not only describing how our
generated objects are
comprised of their parts, but
also a way of describing the

“Defining the

ontology for the

generator (or the

set of all

possible

concepts that

exist within the

generator) is a

critical part of

building the

generator.”

Three Lenses For GenerationThree Lenses For Generation

By Jo Mazeika

63

set of things that can become
parts of other things.

iii. Semiotics

Semiotics isn't a new lens, at
least in academia. It's the field of
signs and symbols (the field that
lets us say that this is not a pipe,
but just a visual representation
of one). It's easy to run right
down the rabbit hole of saying
that no things are ever
generated, only representations
of things. But that's not useful if
you aren't concerned with the
philosophical implications and
are more concerned with
making stuff that makes stuff.
Where semiotics comes in is as
follows: humans are very good
at pattern matching and
meaning making (thank you
evolution). It's hard to look at :)
without seeing the smile. It's
hard to not find contexts and
connections between any sort of
generated materials.

Thinking about the semiotics of
a system allows the designer to
not only avoid unfortunate
consequences of symbol
combinations (insert your

favorite example of unfortunate
implications here) but also
allows the designer to leverage
the power of useful symbols in
context. Often this will involve
an extra layer of design on top of
the main generator, or careful
planning on the
ontology/mereology level.

“It's hard to not

find contexts

and connections

between any

sort of

generated

materials.”

64

Mirror LakeMirror Lake
By Kate Rose Pipkin

65

Judging from activity in the PCG community, procedural terrains is
one of the most popular forms of procedural generation. There's no
denying that to a lot of us, creating a terrain that you can emerge
yourself in and explore is very appealing.

I've given this a go a few times myself, and I want to pass on a nice
tip for working with terrain functions that has helped making things
easier for me.

I'll skip the basics and I'll assume you've gotten a simple bumpy
terrain up and running based on a noise function such as Perlin
noise, Simplex noise or similar.

The tyranny of ranges
It's likely that your framework requires inputs or outputs to be in
certain ranges. For example, for a heightfield that accepts height
values between 0 and 1, you might populate your height data like
this:

Tips for Terrain: Define Your

Function in World Space

Tips for Terrain: Define Your

Function in World Space

By Rune Skovbo Johansen

66

for (int i = 0; i < resolution; i++) {
for (int j = 0; j < resolution; j++) {

//Pass array index co-ord i,j to the terrain func
data[i, j] = TerrainFunction(i, j);

}
}

This easily leads you to define your functions such that they match
those ranges. Your terrain function might look like this:

// Function takes x and z index into terrain data and returns height
in 0-1 range.
float TerrainFunction(int x, int z) {

// Base height (0.4) is a bit lower than middle.
// Make each noise bump average to being 50 vertices wide
// and 10% high (+/-).
var heightValue = 0.4 + Noise(x / 50.0, y / 50.0) * 0.1;

}

While this can work fine for a while, it creates friction down the line.

One of the first things you'll do to make your terrain more
interesting might be to add together multiple noise functions with
different scales. And at one point they might exceed the 0-1 range
that the terrain accepts. Now you have to scale the output of all your
noise functions down to compensate. If you have any calculations
that take slopes into account, those need to be adjusted as well.

The same problem might occur if you find out you want the terrain
to be more or less detailed, or if you decide to make the overall
terrain area coverage smaller or larger. All the values in your
function are also rather arbitrary, which makes them harder to
visualize.

Using world space units
The solution to all this is to not let your terrain functions depend on
arbitrary ranges but define them in world space. Just define
everything in meters or feet, or whatever unit you use in your world.

“One of the first

things you'll do

to make your

terrain more

interesting

might be to add

together

multiple noise

functions with

different scales.”

67

// Function takes x and z coordinates in meters and returns
// height in meters.
float TerrainFunction(float x, float z) {

// Base height is at 10 meters above 0 (sea level).
// Make each noise bump average to being 40 meters wide
// and 20 meters high (+/-).
var height = 10.0 + Noise(x / 40.0, y / 40.0) * 20.0;

}

Defining terrain bounds
To be able to do things this way you need to define your world space
terrain bounds. These are just the bounds in world space your
terrain was already taking up. You can derive those bounds from the
existing size of your terrain, or you can define the bounds first and
scale your terrain to fit. Either way you'll end up having bounds
values you can make use of. For example like this (assuming y axis is
upwards):

var minX = 0.0;
var maxX = 1000.0;
var minZ = 0.0;
var maxZ = 1000.0;
var minHeight = -20.0;
var maxHeight = 40.0;

Converting coordinates from array indices to world space
You can convert from array indicies to world space coordinates with
these conversions:

for (int i = 0; i < resolution; i++) {
var x = minX + (maxX - minX) * i / resolution;
for (int j = 0; j < resolution; j++) {

var z = minZ + (maxZ - minZ) * j / resolution;
// Pass world coordinate x,z to the terrain function...
height = TerrainFunction(x, z);

}
}

Converting heights from world space to 0-1 range
And as a very final step, you can scale your world space height into a
0-1 range using:

“These are just

the bounds in

world space your

terrain was

already taking

up.”

68

for (int i = 0; i < resolution; i++) {
var x = minX + (maxX - minX) * i / resolution;
for (int j = 0; j < resolution; j++) {

var z = minZ + (maxZ - minZ) * j / resolution;
// Pass world co-ord x,z to your terrain func
height = TerrainFunction(x, z);
heightValue = (height - minHeight) / (maxHeight -

minheight);
data[i, j] = heightValue;

}
}

Now that your data format and your terrain function is completely
uncoupled, you can change the terrain resolution, or the area the
terrain covers, without having to change your functions. And you
can mess about with your functions in meters (or whatever) without
thinking about fitting them into a specific range. If they go out of
range, just increase the range accordingly in your defined bounds,
and everything is well again.

You can read more about procedural generation on Rune's blog at
http://blog.runevision.com

“And you can

mess about with

your functions in

meters (or

whatever)

without thinking

about fitting

them into a

specific range.”

69

Introduction

It should come as no real surprise that most procedural content
generation (PCG) systems are underpinned by a good random
number generator. Most programming languages provide a means
to generate random numbers; traditionally via a rand() function.
This function typically generates uniform random numbers, which is
to say, any number has the same likelihood of being returned as any
other. If you are looking to implement your own then a nice starting
point may be the Xorshift PRNG.

Procedural content however is less about randomness, and rather
more about building upon sources of randomness to create unique
and artistic content. In this article, we will look at rand() and see
how it can be extended into something more versatile.

I feel a quick disclaimer is in order however; I am a programmer, not
a statistician, so while the following techniques have served me well
for my PCG needs, there is a good chance my math or terminology is
wrong…

Starting point

As a starting point, let’s assume that we have a function randf() that
returns a uniform number in the range [-1, +1]. Such a function may
already be provided by your language but is generally trivial to
implement, for instance:

Be Less Random with rand()Be Less Random with rand()

By Aidan Dodds

@Aidan_Dodds

“Procedural

content however

is less about

randomness, and

rather more

about building

upon sources of

randomness to

create unique

and artistic

content.”

70


```
function randf()
    # where rand() returns a random unsigned integer
    return 1.0f - float(rand() % 4096) / 2048;
end
```

Uniform distributions however are often not the best fit artistically
for a game or PCG system. It can be very useful to have control over
the probability of our generated values. So lets look at some
alternatives to the uniform distribution, and how to produce them
(in pseudo code form):

1D distributions

Triangular distribution:

By taking the average of two random numbers it can be shown that
there is a much stronger chance of a value near 0.0 being produced
than that of 1.0 or -1.0.

71

Such a distribution can be useful when you want to add a some
variance to data with a few large variations and substantially more
small variations.

```
function rand_triangle()
    return (randf()+randf()) / 2.0
end
```

Pinch distribution

The pinch distribution as I call it (because i do not know the correct
term) is somewhat like an extreme version of the triangle
distribution. values near 0.0 are very probable where as it is rare
that values near 1.0 and -1.0 will be returned. This distribution has
great results when used for adding a little variation to firing lines for
example. I have also had nice results using this distribution to effect
the direction of each element in a particle system.

“The pinch

distribution as I

call it (because i

do not know the

correct term) is

somewhat like

an extreme

version of the

triangle

distribution.”

72


```
function rand_pinch()
    return randf() * abs(randf())
end
```

Gaussian distribution

A Gaussian distribution (or normal distribution as its also known)
can be constructed, and is very distinctive with its bell like
appearance. Interestingly the higher to number of rounds the better
the approximation becomes. This distribution can be nice when you
want a good range of values with a few larger outliers. This could
make a nice basis for generating good looking star systems.

73

2D and 3D distributions

Random 2D vector in a circle

When writing procedural generation systems it is often desirable to
be able to generate a 2D or 3D vector that falls uniformly within a
circle or sphere. That is to say the vectors direction is random, and
its magnitude ranges from (0.0, 1.f]. This can be useful for
applications such as random sampling around a point, making
random walks and stochastic approximations like ambient
occlusion.

74


```
function rand_circle()
    float x = 0.0, y = 0.0
    while (True)
        x = randf()
        y = randf()
        if ((x*x + y*y) <= 1.0)
            return (x, y)
        end
    end
end
```

Random unit 2D vector

Generating a good random unit vector (vector with length 1.0) can be
a little more trick then it first seems. The most obvious solution
would be to randomize the x, y and z components and then
normalize the vector; which however produces a less then ideal
vector since it will be biased towards diagonals.

We can generate an unbiased vector by starting with our
random_circle() function before normalizing it.

```
function rand_unit_vector()
    return vector_normalize(rand_circle())
end
```

Random 3D vectors in a sphere

The same approach we took for generating 2D vectors can easily be

“...which

however

produces a less

then ideal vector

since it will be

biased towards

diagonals.”

75

extended to three dimensions as follows.

```
function rand_sphere()
    fload x = 0.0, y = 0.0, z = 0.0
    while (True)
        x = randf()
        y = randf()
        z = randf()
        if ((x*x + y*y + z*z) <= 1.0)
            return (x, y, z)
        end
    end
end
```

Like we did before, if we normalize this vector then we can produce
an unbiased unit 3D vector.

In closing

A few relatively simple techniques to generate more interesting
random numbers have been presented. Where and how they are
applied is still firmly where the artistic element of procedural
generation lies. Like an artist however, its always good to have more
brushes to paint with.

76

Voxel models generated
with the wave function

collapse algorithm
http://github.com/mxgm
n/WaveFunctionCollapse

Voxel ModelsVoxel Models

By Ex Utumno

77

In the world of procedural content generation (PCG) there have been
a wide myriad of systems and algorithms that create new and
interesting content such as levels, assets and even complete games.
But one of the limitations of these generators is the one of domain
specificity. Level generators for instance, focus on either one very
specific type of games (i.e Super Mario Bros), or assets (terrains,
trees, textures). As of recently there has been an increased interest
on generalized content generation, an example of this is the GVGAI
[1] competition on level generation. Removing the constraints of
domain specificity might lead into a new series of generators that
can create content that might adapt to innovative ideas of gameplay.

One field in which generalized content generation might come in
handy is the one of automated game design (AGD) with systems
capable of creating new game rules and mechanics. Building
larger-scale AGD systems implies going beyond rules and mechanics
into the generation of gameplay spaces and assets that “make sense”
with the new types of game rules and mechanics that are being
generated. Since AGD systems create the context for level and asset
generation, generators should adapt to create compelling content
regardless of whatever context is thrown at them. This invariably
leads to a series of very interesting research questions and design
considerations.

The first question to arise, is how do we set up an architecture to
create context independent generators for levels in AGD systems?
Assuming we already have a rule generation mechanism in place,
how do we generate levels that best fit the context generated by our
rule generator? An initial suggestion would be to integrate an
intermediate layer that can associate specific patterns in game rules
to a notion of genre (as different types of games yield different level
geometry) in game, and from there to choose an appropriate level
generation mechanism that better suits the understood context from
our rule generation process. This notion is explored by Zook and
Riedl [2] in their paper "AI as a Game Producer" in which creative
direction is given by a producer layer that has knowledge about
genre and can lead a series of generative systems to create a game.

But how do we map rules to a notion of genre? From this point, we
could imagine using several different approaches: For instance we
could build a ruleset that maps certain elements of game rules
(player affordances, goals, camera relationships, world physics) into

Challenges and Experiences

in Generalized Level and Content

Generation

Challenges and Experiences

in Generalized Level and Content

Generation

By Afshin Mobramaein, UC Santa Cruz

“Since AGD

systems create

the context for

level and asset

generation,

generators

should adapt to

create

compelling

content

regardless of

whatever

context is

thrown at them.”

78

References
[1] Perez-Liebana D et al. “General Video Game AI:Competition, Challenges and Opportunities”, 2016, In
AAAI 2016 Proceedings.
[2] Zook A, Riedl, M, “AI as Game Producer”, 2013, In CIG (Computational Intelligence in Games) 2013
Proceedings.
[3] Summerville A et al, The VGLC: The Video Game Level Corpus ,2016, In Proceedings of FDIGRA 2016
7th Workshop on Procedural Content Generation
[4] Sorenson N, Pasquier P, Towards a Generic Framework for Automated Video Game Level Creation,
2010, In International Conference on Evolutionary Computation in Games, EvoGame Proceedings.

a game archetype genre that fits the best. This can be seen as a
starting point, and one that will require a large knowledge
engineering effort. On the other hand, we could picture using a
data-driven approach in which we can cluster different types of
games from a standardized corpus (think VGDL or PuzzleScript) to
learn a notion of genre, and then apply a classification model for
new observations generated by our system.

Another important question that arises is the one of which
generative method to use after a type of context has been
determined. One strategy that could work is to leverage the power of
the wealth of great generative systems that the PCG community has
used and to choose a generator that fits the type of game that fits the
generated rules better. While this sounds like a very viable option, it
also implies that a standardized knowledge representation of what a
game level looks like. A more modern approach could also involve
using deep learning techniques, such as generative models with a
corpus of video game levels such as the VGLC by Summerville et. al
[3] as its training set. Finally, an approach such as the one explored
by Sorenson and Pasquier [4] in their paper “Towards a Generic
Framework for Automated Video Game Level Creation” that relies in
breaking down levels into building blocks called “design elements”
from different types of games can be used. A concern here is the one
explored by our ruleset approach for our genre mapping, is the one
of knowledge engineering to encode a large set of different design
element families.

The questions above are some of the emerging issues surrounding
generalized level and content creation, and there are clearly more
questions that are as interesting such as the ones involving
evaluating the quality of generated artifacts. But for now, this seems
to be a promising area in PCG research and the future seems to hold
some interesting systems being developed such as the ones that
competed in the GVGAI content generation track this year.
Hopefully, we will see a large wealth of great generalized level
generators in the near future, and with that a myriad of lessons that
we can learn from them.

“...that relies in

breaking down

levels into

building blocks

called “design

elements” from

different types

of games can be

used.”

79

Watch online at http://tinyurl.com/seedslucidity

Who I am:

I am Scott Redrup and I have spent the past three years completing a
Bsc (hons) degree in Computing and Game Development at Plymouth
University. In my final year I completed a substantial project that
explored procedural level design, and created a game called
Lucidity.

What I did
The project had two components, a research phase and an
implementation stage with a final demonstration. I analysed current
work within the fields of procedural generation, level design,
procedural level design and game design patterns. This allowed me
to identify current issues and propose a solution. My final product is
a 3D dungeon crawler with seven different level objectives that
demonstrate how game design patterns can be used with procedural
generation to create interesting levels.

Research
I had little knowledge about the current work within level design so I
spent a lot of time reading the works of Togelius, Dahlskog, Bjork
amongst other notable game AI researchers. Significant time was
invested in analysing design patterns, starting with Alexanders
pattern language compared against the gang of fours approach to
software engineering and finally Bjorks collection of patterns. This
lead to interesting discussions about how patterns can be identified,
classified and categorised. All worthy research projects in their own
respects.

Implementation
Levels were generated by first creating the basic level structure.
Levels feature two heights of elevation, the ground and mountains
layers, both of which are flat. Players can access the mountain layer
via stairs. The level is built by carving the ground into mountains by
using a random walk algorithm and then searching for a suitable
location to place stairs.

LucidityLucidity

By Scott Redrup

80

The level is then split into a grid of 5 x 5 chunks. Each chunk
represents an area of space within the level and contains
information for how the area should look i.e what scenery is
generated and its arrangement.

The third step is to tailor the basic level in order to create the 7
different level types. To create ‘Arena Battles’ the levels had to be
searched for spaces to place an arena. Whereas for levels like ‘Lots O
Enemies’, enemy spawn rates had to be increased.

Finally basic gameplay elements had to be added including a win /
loss condition e.g being killed, as well as a menu, tutorial screens etc.

Evaluation
Three main issues were encountered with my solution:

○ Code Structure: Procedural projects are really fun
and it is easy to make something quickly, without
paying attention to the structure of the back end. I
fell for this trap and by the end of the project trying
to add or remove features proved impossible.

○ Performance: I relied on the Unity Asset Store to
make a game that looked good. With a limited range
of free assets available, Lucidity ended up with lots
of poorly optimised assets cause significant lag on
most low-mid ranged machines. Levels with specific
spawning requirements such as Arena Battles
caused 1-3 seconds of initial lag.

○ Difficulty: I envisioned levels were to be assessed
on how easily the difficulty rating could be
adjusted. This would link to procedural enemies
that would vary in health, damage, speed etc. Which
would be set by a difficulty class, due to the
aforementioned code structure issues as well as a
lack of time, I failed to implement the feature.

Discussion and Going Forward
I’d be interested to see my approach applied within a large scale
application as I’m unsure if the levels would remain interesting or
become repetitive. I’m also unsure if the approach is optimised to
handle large scale generation.

81

I managed to achieve an illusion of variety in Lucidity by using a
forest themed environment and vegetation appeared to hide
repeating patterns effectively. In an urban environment this would I
predict this would be more noticeable.

One thing I recognised with most of the research I carried out was
that a lot of the work is still only concerned with simple game genres
such as platformers and dungeon crawlers. I’d want to see my work
applied to a more complex genre.

Conclusion
To conclude, 80% of this project was spent thinking that I’d make a
procedural thing that did nothing, and there were certainly a few
moments where I’d hit play in Unity and a small change had messed
up the whole generation. So ensure that you go into the project
knowing what you want to achieve, use version control and commit
often! BUT! Procedural projects are scary, yet definitely give it a go
and explore! There is something strangely satisfying about
generating unique complex levels at the click of a button!

“So ensure that

you go into the

project knowing

what you want

to achieve, use

version control

and commit

often!”

82

This year in the ongoing development of Ultima Ratio Regum, a
ten-year experimental roguelike project focused on the procedural
generation of culture and cultural behaviours, my focus has been
almost entirely on people. The world has been notoriously devoid of
human life for several years despite the tremendous social, religious
and political detail that has gone into the worldbuilding, and it was
finally time – with all these foundational elements in place – to
change that.

Firstly, what should they look like? I wound up creating an
interwoven two part model of biological and cultural NPC elements.
On the biological front, we have a range of variations: different
genetic groups have different randomly-selected shapes of eyes,
chins, necks, ears, noses, and so forth, alongside different colours for
their hair, and their eyes. Skin tone of course varies with how close
to the equator a particular person’s family originally hail from, with
an appropriate range of variation from the darkest black to the
palest white. I then combined these with cultural elements, which
take two distinct forms: cultural elements that are applied to an
NPC’s face (the only part of their “body” you can see in-game), and
those applied to the items (clothing, weapons, etc) that a character
happens to carry with them. On the faces of NPCs we find a massive
range of hairstyles for both women and men which vary with
culture, along with sets of distinctive cultural practices: scarification,
tattooing, specific kinds of jewellery, turbans, paint markings, and
many others.

This was then joined by clothing styles, for which I found myself
building a rather detailed procedural clothing style generator.
Clothing styles can have shirts and trousers, waistcoats and skirts,
dresses, or togas, or anything in-between, with additional variation

“...project

focused on the

procedural

generation of

culture and

cultural

behaviours, my

focus has been

almost entirely

on people.”

Ultima Ratio RegumUltima Ratio Regum

By Mark Johnson

83

 in style and appearance determined by the overall aesthetic
preferences of the nation in question for certain shapes, certain
colours, and so forth. Styles are distinctive either to entire cultures,
or to niche demographics within a culture, such as the religious
clergy, or soldiers. Each clothing style then breaks down into
multiple tiers, helping the player identify the status of an unknown
NPC and adding far greater variation to this part of the game visuals.

This therefore allowed for the interesting intersection of biological
and cultural traits, and the ability for the player to play detective.
Consider an empire from an equatorial region – the player is used to
encountering characters with a dark skin-tone wearing a certain set
of clothing and jewellery. At some point, however, the player
happens to bump into a pale-skinned character with a different hair
colour, who nevertheless possesses the same clothing styles (so
biological difference, cultural similarity). Does this person represent
a conquered colony? A trader trying to fit in? A slave or servant? Or
something else? Nothing of this sort is ever explicitly told to the
player, and so the player must instead rely on their knowledge of
that particular generated world in order to draw conclusions based
on their physical appearance, their clothes and any facial cultural
traits, as well as their actions and patterns of speech, which brings us
to our latter point – what NPCs actually do.

Developing NPC behaviours means how they spend their day, and
how they talk to the player. The NPCs in URR now range from
mercenaries to priests, guards to merchants, farmers to inquisitors,
and arena fighters to servants and eunuchs. Each NPC class spawns
and lives in a different part of the map and has a very different set of
rules for their average everyday behaviours – take, for example,

“...so the player

must instead

rely on their

knowledge of

that particular

generated world

in order to draw

conclusions...”

84

this screenshot of priests and worshipers (standard humans, shown
with an “h”) going about their day.

These highly active NPCs are then married with a pretty unusual
speech system. Joining us now in this last part of 2016’s URR journey
will be Orangejaw Moonblizzard, my profoundly
procedurally-generated and facially-tattooed playtesting character
who has travelled with me for over a month now – which is to say, I
haven’t in this time needed to generate a new world to experiment
with, and thereby expunge brave Orangejaw from existence. The
goal was to create a speech system where the player could ask a
tremendous range of questions without having to resort to
programming it as a “chatbot”, to create realistic (or at least
realistic-ish) human conversations, and to allow the player to
uncover large volumes of information about the game world simply
by speaking to its inhabitants. AS things stand now, I feel very

85

confident this objective is almost complete:

With all of these elements (almost) complete, URR now finds itself
replete with a procedurally-generated cast of culturally-detailed
characters, ready for the player to discover, watch, talk to, and
perhaps find out crucial clues from...

86

87

88

Intending to travel by road to
Naissus, Virgil left Ulpiana. It
was at least 80 miles.

He passes another milestone.
Along the road are graves, and
a cenotaph. An oxcart passes,
loaded with grain. The road
narrows here, an orchard wall
encroaching on it. There a
spring wells up, and around
about it is a meadow.

* * *

Intending to travel by road to
Naissus, Virgil left Bononia
(Moesia). It was at least 76
miles.

A cloud passes in front of the
sun. As they go up from
Bononia (Moesia), they see the
ruined walls. A grove of
Minerva is hard by the road, a
grove of poplar trees. The sun
beats down. Now the road is
quieter. Not far from the road
is a grave, on which is
mounted a soldier standing by
a horse. Who it is I do not
know, but both horse and
soldier were carved by

Praxiteles. Workers are
raising the level of the road.
This is a smooth road, by
which many wagons were
bringing wood to Naissus.

* * *

From Ancona to Iader is a
journey of about 107 miles
when travelling by ship down
the coast.

Out of the clouds bursts fire
fast upon fire. Dubious days of
blind darkness we wander on
the deep, nights without a
star. Then comes the creak of
cables and the cries of
seamen. Frequent flashes light
the lurid air. All nature, big
with instant ruin, frowned
destruction. The oars are
snapped. Piteous to see, it
dashes on shoals and girdles
with a sandbank. The
helmsman is dashed away and
rolled forward headlong.

Then was land at last seen to
rise, discovering distant hills
and sending up wreaths of
smoke.

“Out of the

clouds bursts

fire fast upon

fire. Dubious

days of blind

darkness we

wander on the

deep, nights

without a star.”

ElisionElision

By Isaac Karth

procedural-generation.tumblr.com

90

Within a long recess there lies a
bay: an island shades it from the
rolling sea and forms a port
secure for ships to ride. Two
towering crags, twin giants,
guard the cove, and threat the
skies. Betwixt two rows of rocks
a sylvan scene appears above,
and groves for ever green.
Beneath a precipice that fronts
the wave, with limpid springs
inside, and many a seat of living
marble, lies a sheltered cave.
Ships within this happy harbor
meet, the thin remainders of the
scattered fleet. They lay their
weary limbs still dripping on the
sand.

* * *

For Virgil's Commonplace Book,
which I generated for National
Novel Generation Month 2015, I
made use of elision, a literary
trick I learned from Nick
Montfort's 1K Story Generators.

Each kind of connection has a
list of evocative sentences
describing the journey. The
generator picks a fraction of
phrases from the list and joins
them together. Many of the
phrases are atmospheric and

imply relationships while not
relying on the existence of any
of the other phrases. The reader
fills in the gaps left by the
missing phrases.

Additionally, this technique let
me borrow many of the phrases
from Roman travel literature or
Virgil's own poetry, lending
another layer of structure,
allusion, and meaning.“The generator

picks a fraction

of phrases from

the list and joins

them together.”

90

A question. How does procedurally generated terrain
compare to the real thing? Having had opportunities to travel
and see a variety of landscapes, my conclusion is; not very
well. Real terrain is very varied and often has distinctive
features, which is what can make a particular terrain striking
to the eye.

I have decided to use Outerra (http://www.outerra.com/) to
compare real terrains with their corresponding fractal
terrains as Outerra uses heightmaps of real terrain (Earth) to
a specific resolution (30m) and interpolates between height
points using fractal methods (described in more detail here
http://www.outerra.com/procedural/demo.html), therefore
allowing a direct comparison. This article is not a critique of
Outerra which is an outstanding piece of software.

I have also performed some experiments using the midpoint
displacement algorithm and shown the results below.

Some Examples Of Real World Terrains

Is Self Similarity Too SimilarIs Self Similarity Too Similar

By Mark Bennett

91

Comparison of Real vs. Procedural Terrain

Below are images of real terrains, compared with their fractalised
versions using Outerra from as close a viewpoint as possible. Some
of the character of the original terrains is lost when fractal methods
are used to interpolate between height points.

The Jungfrau loses the beautiful Silberhorn to the right of the main
summit.

The distinctive towers which make Monument Valley in the USA
such a big tourist attraction disappear when fractalized as can be
seen above.

Jungfrau (Switzerland) Jungfrau (Outerra)

Monument Valley Monument Valley (Outerra)

92

Parabella mountain in Russia has a very distinctive central ridge
from which it gets its name. This also does not survive the fractal
sledgehammer.

El Capitan, in the Yosemite Valley in California gains a series of
jagged peaks on its summit which are not present on the original, by
contract, the huge cliff face loses all of its features.

Experiments

I implemented the simplest possible fractal algorithm, the Midpoint

Prabella Mountain Prabella Mountain (Outerra)

El Capitan El Capitan (Outerra)

93

Displacement Algorithm and set about tweaking some of it’s
parameters. All these experiments use the same seed for the random
number generator. The Python code is available at:
https://github.com/MarkBennett12/MidPointDisplacementExperimen
ts

Standard Midpoint Displacement
The output of the unadorned algorithm.

Random Lacunarity
Here the lacunarity has been randomised (using a separate RNG) by
only allowing a 50% chance of displacement at each iteration.

94

https://github.com/MarkBennett12/MidPointDisplacementExperiments
https://github.com/MarkBennett12/MidPointDisplacementExperiments
https://github.com/MarkBennett12/MidPointDisplacementExperiments

Random Midpoint Placement
Here the position of the midpoint has been randomised (separate
RNG again). This allows cliffs and scale variations to appear.

Random (Triangular) Midpoint Placement
Randomised midpoint again but using the triangular random
function to get more consistent output.

Random Midpoint and Random Lacunarity
Both Lacunarity and midpoint randomised

95

Some additional experiments were performed using simple
functions to modulate the amount of random displacement. Again,
the same random seed is used each time. The output of the function
is normalised to as close to 0 and 1 as possible and clamped so as not
to go below 0. The output is on the left, the function shown below
and the graph of the function shown on the right.

Some of the functions produce output which exceeds the upper scale
of the graph, however, the full value is used to modulate the RNG,
which sometimes exceeds one, giving heights above the given height
parameter. Also, some of the finer details may be lost due to resizing
the images.

sin(x)

sin(x/2-2)*8

96

sin(x/2+6)*10

sin(x/2+7)*10

sin(x)*10

97

sin(x+3)*50

sin(x+6)*30

log(x)

98

log(x*3)

Conclusions
This seems to demonstrate that varying parameters can have a
significant effect on the output and give greater variety to terrains.
The greatest effect is made by randomising the midpoint though this
process needs more control. Using functions as parameters allows a
great deal of control and gives a good variation in output although a
lot on number tweaking is required.

It is now clear how these methods will work with other PCG
algorithms such as Perlin noise.

Further Work
Future experiments will look at bringing more control to the
randomized midpoint, perhaps by using functions to modulate the
output of RNG. It is also important to adapt these approaches to 3D.
The functions used can be applied to 3D as seen in the graph below
although it is less clear how that can be applied to a 3D terrain.
Possibly the fractal terrain could be summed with the function, or
each x z point of the function could be applied to a fractal parameter
of the terrain at that point.

It would also be useful to be able to smoothly transition between one
function and another over the width, depth and height dimension.
This might be possible by having multiple terms and varying the
constants used, when a term is multiplied by a constant of zero it is
effectively removed from the equation. The constants themselves
could be varied by a fractal algorithm.

It would also be useful to try to adapt these methods to other PCG
algorithms.

99

By Niall Moody

100

HummingbirdHummingbird

These are pages

from the zine I

made for my game

Hummingbird.

Hummingbird is an

infinite procedural

musical

exploration game.

Built around a

complex set of

synthesizers and

procedural

behaviours and

colour palettes,

the world you

encounter will be

different each time

you play.

101

I made the zine by

hand-writing/drawing

hundreds of

sentences generated

by the game's text

generators (which are

a combination of

custom grammars,

and rudimentary

markov chain

generators whose

inputs are Wasily

Kandinsky's

Concerning the

Spiritual in Art, Walt

Whitman's Leaves of

Grass, and Robert

Kirk's A Secret

Commonwealth).

To download this cut-and-play please check the PDF Zine at Procjam.com

102

